Work & Energy – Q4 [16 marks](19/6/21)

Exam Boards

OCR : Mechanics (Year 1)

MEI: Mechanics a

AQA: Mechanics (Year 1)

Edx: Mechanics 1 (Year 1)

A block of mass 5kg is initially ascending a slope at a speed of $2ms^{-1}$. The slope has a gradient of 0.75, and the only resistance to motion is a frictional force of 20N.

(i) How far up the slope does the block travel? [6 marks]

(ii) What is the total time taken for the block to travel up the slope and return to its starting point? [10 marks]

Solution

(i) By conservation of energy,

Work done against friction = loss of KE – gain in PE

So
$$20d = \frac{1}{2}(5)(2^2) - (5)(9.8)dsin\theta$$
, [3 marks]
where *d* is the distance moved, and $tan\theta = 0.75 = \frac{3}{4}$,
so that $sin\theta = \frac{3}{5}$ (from the Pythagorean triple 3,4,5) [1 mark]
Thus $20d = 10 - \frac{147d}{5}$,
 $\Rightarrow 100d = 50 - 147d \Rightarrow d = \frac{50}{247} = 0.202m$ or $20.2cm$ (3sf)
[2 marks]

(ii) Up the slope, by N2L:

 $-5gsin\theta - 20 = 5a$, where *a* is the acceleration up the slope So $a = -(9.8)\left(\frac{3}{5}\right) - 4 = -\frac{247}{25} = -9.88 \text{ ms}^{-2}$ [3 marks]

If *t* is the time taken to go up the slope,

 $v = u + at' \Rightarrow 0 = 2 + \left(-\frac{247}{25}\right)t$ $\Rightarrow t = \frac{50}{247} = 0.20243s$ [2 marks]

Down the slope, by N2L:

 $5gsin\theta - 20 = 5a'$, where a' is the acceleration down the slope

So
$$a' = (9.8) \left(\frac{3}{5}\right) - 4 = \frac{47}{25} = 1.88 \, ms^{-2}$$
 [2 marks]
From (i), $d = \frac{50}{247}$

If t' is the time taken to go down the slope,

$$s = ut + \frac{1}{2}a(t')^{2'} \Rightarrow \frac{50}{247} = 0 + \frac{1}{2}(\frac{47}{25})(t')^{2'}$$
$$\Rightarrow (t')^{2} = \frac{2500}{11609} \Rightarrow t' = 0.46406$$

So total time is 0.20243 + 0.46406 = 0.66649 = 0.666s (3sf) [3 marks]