Work \& Energy - Q4 [16 marks](19/6/21)

Exam Boards

OCR : Mechanics (Year 1)
MEI: Mechanics a
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 1)

A block of mass 5 kg is initially ascending a slope at a speed of $2 \mathrm{~ms}^{-1}$. The slope has a gradient of 0.75 , and the only resistance to motion is a frictional force of 20 N .
(i) How far up the slope does the block travel? [6 marks]
(ii) What is the total time taken for the block to travel up the slope and return to its starting point? [10 marks]

Solution

(i) By conservation of energy,

Work done against friction $=$ loss of $\mathrm{KE}-$ gain in PE
So $20 d=\frac{1}{2}(5)\left(2^{2}\right)-(5)(9.8) d \sin \theta, \quad[3$ marks]
where d is the distance moved, and $\tan \theta=0.75=\frac{3}{4}$,
so that $\sin \theta=\frac{3}{5}$ (from the Pythagorean triple $3,4,5$) [1 mark]
Thus $20 d=10-\frac{147 d}{5}$,
$\Rightarrow 100 d=50-147 d \Rightarrow d=\frac{50}{247}=0.202 m$ or $20.2 c m(3 \mathrm{sf})$
[2 marks]
(ii) Up the slope, by N2L:
$-5 g \sin \theta-20=5 a$, where a is the acceleration up the slope
So $a=-(9.8)\left(\frac{3}{5}\right)-4=-\frac{247}{25}=-9.88 m s^{-2} \quad$ [3 marks]
If t is the time taken to go up the slope,
$' v=u+a t^{\prime} \Rightarrow 0=2+\left(-\frac{247}{25}\right) t$
$\Rightarrow t=\frac{50}{247}=0.20243 \mathrm{~s} \quad$ [2 marks]
Down the slope, by N2L:
$5 g \sin \theta-20=5 a^{\prime}$, where a^{\prime} is the acceleration down the slope
So $a^{\prime}=(9.8)\left(\frac{3}{5}\right)-4=\frac{47}{25}=1.88 \mathrm{~ms}^{-2} \quad[2 \mathrm{marks}]$
From (i), $d=\frac{50}{247}$

If t^{\prime} is the time taken to go down the slope,
$' s=u t+\frac{1}{2} a\left(t^{\prime}\right)^{2 \prime} \Rightarrow \frac{50}{247}=0+\frac{1}{2}\left(\frac{47}{25}\right)\left(t^{\prime}\right)^{2}$
$\Rightarrow\left(t^{\prime}\right)^{2}=\frac{2500}{11609} \Rightarrow t^{\prime}=0.46406$
So total time is $0.20243+0.46406=0.66649=0.666 s(3 s f)$
[3 marks]

