Work \& Energy - Q3 [5 marks](19/6/21)

Exam Boards

OCR : Mechanics (Year 1)
MEI: Mechanics a
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 1)

A car of mass 1200 kg starts to descend a slope at $10 \mathrm{~ms}^{-1}$. The slope is at a constant angle θ to the horizontal, where $\sin \theta=\frac{1}{10}$. If the car is not accelerating or braking, and there is a constant resistance to motion of 500 N , find the speed of the car when it has travelled 100 m . Assume that $g=10 \mathrm{~ms}^{-2}$. [5 marks]

Solution

Method 1

By the Work-Energy principle,
Gain in $\mathrm{KE}=$ Work done by forces,
so that $\frac{1}{2}(1200)\left(v^{2}-10^{2}\right)=1200 g(100 \sin \theta)-500(100)$
[3 marks]
$\Rightarrow 600 v^{2}=120000-50000+60000=130000$
$\Rightarrow v^{2}=\frac{650}{3} \Rightarrow v=14.7 \mathrm{~ms}^{-1}(3 s f)$ [2 marks]

Method 2

By Conservation of Energy, work done against resistance $=$ loss of $\mathrm{PE}-$ gain in KE
$\Rightarrow 500(100)=1200 g(100 \sin \theta)-\frac{1}{2}(1200)\left(v^{2}-10^{2}\right)$,
which gives the same equation.

