Work \& Energy - Q2 [11 marks](19/6/21)

Exam Boards

OCR : Mechanics (Year 1)
MEI: Mechanics a
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 1)

A car of mass 1200 kg pulls a trailer of mass 400 kg . There are resistances of 400 N and 100 N on the car and trailer, respectively.
(i) If an acceleration of $0.2 \mathrm{~ms}^{-2}$ is possible when travelling at $20 \mathrm{~ms}^{-1}$, find the maximum speed of the car. [6 marks]
(ii) If the trailer is connected to the car by means of a rope, what is the maximum deceleration that is possible? [5 marks]

Solution

(i) Considering the car and trailer combined, if X is the driving force of the car's engine:
$N 2 L \Rightarrow X-(400+100)=(1200+400)(0.2)$
$\Rightarrow X=820 \mathrm{~N} \quad$ [3 marks]
The (maximum) power of the car's engine is therefore $820(20)=16400$ [1 mark]

At maximum speed, the driving force is equal to the total resistance, 500 N , and the maximum speed, $v_{\max }$ is given by
$16400=500 v_{\max }$,
so that $v_{\max }=32.8 \mathrm{~ms}^{-1}$ [2 marks]
(ii) Considering the trailer,
$N 2 L \Rightarrow T-100=400 a$,
where T is the tension, and a is the acceleration [1 mark]
The rope cannot be in compression, so $T>0$.
Hence $T=400 a+100>0 \quad[2$ marks]
$\Rightarrow a>-0.25$
ie the maximum possible deceleration is $0.25 \mathrm{~ms}^{-2}$ [2 marks]

