Work \& Energy - Q1 [4 marks](8/6/21)

Exam Boards

OCR : Mechanics (Year 1)
MEI: Mechanics a
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 1)

A car of mass 1 tonne starts to climb a hill at $20 \mathrm{~ms}^{-1}$. The slope of the hill is a constant θ, where $\sin \theta=\frac{1}{10}$. If the car is not accelerating (or braking) and there is a constant resistance to motion of 1000 N , find the speed of the car when it has gained a height of 5 m . Assume that $g=10$. [4 marks]

A car of mass 1 tonne starts to climb a hill at $20 \mathrm{~ms}^{-1}$. The slope of the hill is a constant θ, where $\sin \theta=\frac{1}{10}$. If the car is not accelerating (or braking) and there is a constant resistance to motion of 1000 N , find the speed of the car when it has gained a height of 5 m . Assume that $g=10$. [4 marks]

Solution

Method 1

By the Work-Energy principle,
Gain in $\mathrm{KE}=$ Work done by forces,
so that $\frac{1}{2}(1000)\left(v^{2}-20^{2}\right)=-1000 g(5)-1000\left(\frac{5}{\sin \theta}\right)$
[2 marks]
$\Rightarrow 500 v^{2}=200000-50000-50000$
$\Rightarrow v^{2}=200 \Rightarrow v=14.1 \mathrm{~ms}^{-1}(3 s f)$ [2 marks]

Method 2

By Conservation of Energy,
Gain in $\mathrm{PE}=$ loss of $\mathrm{KE}-$ work done against resistance
$\Rightarrow 1000 g(5)=\frac{1}{2}(1000)\left(20^{2}-v^{2}\right)-1000\left(\frac{5}{\sin \theta}\right)$
which gives the same equation.

