Q1 [4 Marks]

A car of mass 1 tonne starts to climb a hill at $20 \mathrm{~ms}^{-1}$. The slope of the hill is a constant θ, where $\sin \theta=\frac{1}{10}$. If the car is not accelerating (or braking) and there is a constant resistance to motion of 1000 N , find the speed of the car when it has gained a height of 5 m . Assume that $g=10$.

Q2 [11 Marks]

A car of mass 1200 kg pulls a trailer of mass 400 kg . There are resistances of 400 N and 100 N on the car and trailer, respectively.
(i) If an acceleration of $0.2 \mathrm{~ms}^{-2}$ is possible when travelling at $20 \mathrm{~ms}^{-1}$, find the maximum speed of the car. [6 marks]
(ii) If the trailer is connected to the car by means of a rope, what is the maximum deceleration that is possible? [5 marks]

Q3 [5 Marks]

A car of mass 1200 kg starts to descend a slope at $10 \mathrm{~ms}^{-1}$. The slope is at a constant angle θ to the horizontal, where $\sin \theta=\frac{1}{10}$. If the car is not accelerating or braking, and there is a constant resistance to motion of 500 N , find the speed of the car when it has travelled 100 m . Assume that $g=10 \mathrm{~ms}^{-2}$. [5 marks]

Q4 [16 Marks]

A block of mass 5 kg is initially ascending a slope at a speed of $2 \mathrm{~ms}^{-1}$. The slope has a gradient of 0.75 , and the only resistance to motion is a frictional force of 20 N .
(i) How far up the slope does the block travel? [6 marks]
(ii) What is the total time taken for the block to travel up the slope and return to its starting point? [10 marks]

