Travelling Salesman - Q1 [8 marks](16/6/21)

Exam Boards

OCR : D (Year 2)
MEI:
AQA: D (Year 1)
Edx: D1 (Year 2)
(i) For the network below, use the lower bound algorithm to find a lower bound for a Hamiltonian cycle, by isolating A. [5 marks]

(ii) Use the nearest neighbour algorithm to find an upper bound for a Hamiltonian cycle, starting at A. [3 marks]

Solution

(i) The two shortest arcs leading from A are AB and AE , with total length 14. [1 mark]

The minimum connector for the remaining nodes can be found as follows, using Prim's algorithm (for example), starting at B:

BE 3, EI 3, IF 2, FG 3, IH 3, IJ 5, ED 6, DC 4 ; total length 29 [3 marks]

So the lower bound is $14+29=45$. [1 mark]
(ii) $\mathrm{AB}(5), \mathrm{BE}(3), \mathrm{EI}(3), \mathrm{IF}(2), \mathrm{FG}(3), \mathrm{HI}(3), \mathrm{IJ}(5), \mathrm{JD}(7), \mathrm{DC}(4)$, $\mathrm{CB}(7), \mathrm{BA}(5)$ [2 marks]

Total length: 47 [1 mark]

