
 fmng.uk

1

Travelling Salesman Problem (10 pages; 29/6/20)

(1) Terminology

Walk: (a sequence of arcs, where the end of one arc is the start of

the next) arcs and nodes can be repeated

Trail: arcs can't be repeated, but nodes can be

Path: arcs and nodes can't be repeated

Tour: a closed walk that visits every node at least once

Hamiltonian (or sometimes Hamilton) cycle: a closed walk that

visits every node exactly once (ie a tour for which nodes aren't

repeated) [Note that in a Hamiltonian cycle arcs can't be repeated

either (as otherwise this would mean repeated nodes), and so a

Hamiltonian cycle is a cycle.]

(2) Classical and Practical Problems

The Classical version of the Travelling Salesman Problem

(referred to as the 'Classical Problem') is to find the shortest

Hamiltonian cycle for a network.

However, a Hamiltonian cycle may not exist (see Figure 1); or, if

one does exist, it may not give a good solution (see Figure 2,

where the tour ABACA will usually be preferable to the

Hamiltonian cycle ABCA; ie the fact that nodes are repeated may

be tolerated (or may not be an issue anyway).

If repeated nodes are acceptable (so that the only requirement is

to find a tour) then the problem is referred to as the 'Practical

Problem'.

 fmng.uk

2

Figure 1 Figure 2

Hamiltonian cycles can always be found for a complete graph.

The Practical problem can always be converted to the Classical

Problem by creating a network of shortest distances. Note though

that the solution found will need to be converted back to the

original form (eg the arc between nodes A and D in the network of

shortest distances may represent the path ABCD in the original

network).

The networks of shortest distances corresponding to the

networks in Figures 1 & 2 are shown in Figures 3 & 4.

Figure 3 Figure 4

 fmng.uk

3

(Thus, in Figure 3, A is now connected directly to C by an arc of

weight equal to the shortest distance between A and C in the

original network.)

[The so-called 'triangle inequality' is often referred to in

connection with the network of shortest distances. The idea is

that a complete network can only be a network of shortest

distances if the direct arc (AC, say) between two nodes cannot be

improved on by travelling via another node (say B). It is

sometimes claimed that the network of shortest distances can be

created by repeatedly replacing the weight of AC (for example) by

the sum of the weights of AB and BC, if this gives a smaller value.

However, every possible triangle in the network would have to be

examined.]

Some of the algorithms that are available for the Travelling

Salesman Problem may not work fully if the network is not

complete. This issue can be avoided by using the network of

shortest distances. Also, it may be the case that an algorithm gives

a better solution if the network of shortest distances is used (even

if the original network is complete).

Exam questions should make it clear whether a network of

shortest distances is required.

(3) If a graph is complete and has n nodes, then there will be
1

2
(𝑛 − 1)! possible tours. (We can choose to start at any node

(since the tour is circular), and there will be 𝑛 − 1 ways of

choosing the next node to proceed to (and so on). We divide by 2,

as reversing the order gives the same tour; eg ABCDEA is the

same as AEDCBA.

 fmng.uk

4

The travelling salesman problem thus has factorial complexity,

and computers cannot simply examine all the possibilities if n is

even of moderate size:

𝑛 = 5: 12 tours

𝑛 = 10: 181 440 tours

𝑛 = 15: 4.4 × 1010 tours

(4) Strategy

Unfortunately no algorithm exists for the travelling salesman

problem which can determine the optimal solution. The best that

can be done is to establish upper and lower bounds for the

shortest length, and then to try and refine these, so that the

optimal value is shown to lie within a small enough interval; ie

such that no significant improvement will be obtained from

further work.

The algorithms that are used to do this (and which are described

below) are examples of 'heuristic' algorithms; ie they usually

produce a good solution, but it may not be the best possible one.

Various methods exist for finding tours that have reasonably

short lengths. The length for any such tour represents an upper

bound for the shortest distance (ie the shortest distance can't be

greater than the length found).

An algorithm also exists for establishing a lower bound for the

shortest distance (discussed below). This lower bound is not

usually attainable. All we can say is that a tour cannot have a

shorter length than this.

 fmng.uk

5

It is then a matter of continuing to apply the various methods to

find tours that are shorter than the current upper bound.

(5) Stage 1: Inspection

Figure 5

Referring to the cities example in Figure 5, three possible tours

(with their total lengths) are:

BYOCLB (211+181+83+54+115=644)

BYCOLB (211+150+83+57+115=616)

BOYCLB (74+181+150+54+115=574)

These lengths have been found by inspection, and so far the upper

bound for the shortest distance is 574. The following systematic

methods can be applied to tackle the problem (for a bigger

network, inspection may not be feasible).

 fmng.uk

6

(6) Stage 2: Upper Bound from Minimum Connector

The method is as follows:

(i) Find a minimum connector for the network.

(ii) Duplicate each of the arcs.

This is carried out below:

Figure 6 Figure 7

This produces a length of (74 + 57 + 54 + 150) × 2 = 670

This isn't an improvement on the existing upper bound of 574.

[Note that this method is applicable only to the Practical

Problem.]

(7) Stage 3: Improving on the upper bound

The Minimum Connector method can usually be improved on

significantly by taking one or more shortcuts.

Referring to Figure 7, we start with BOLCYCLOB:

 fmng.uk

7

(74 + 57 + 54 + 150) × 2 = 335 × 2 = 670

This can be replaced with

BOLCYCOB: 335 + 150 + 83 + 74 = 642

or with BOLCYOB: 335 + 181 + 74 = 590

or with BOLCYB: 335 + 211 = 546

Thus the improved upper bound is 546.

(8) Stage 4: Lower Bound Algorithm (using Minimum Connectors)

Referring to Figure 5, any Hamiltonian cycle will consist of 2 arcs

from (eg) B, together with 3 arcs linking O, L, C & Y.

The minimum total length of 2 arcs from B is 74 + 115 = 189

To find the minimum total length of arcs linking O, L, C & Y, we

can find the minimum connector for these nodes.

Applying Prim's Algorithm, for example, starting at O:

OL(57)

OL(57)+LC(54)

OL(57)+LC(54)+CY(150) = 261

Alternatively, applying Kruskal's Algorithm:

LC(54)

LC(54)+LO(57)

LC(54)+LO(57)+CY(150) = 261

Hence the lower bound (so far) is 189+261=450

 fmng.uk

8

Further lower bounds can be established by dividing up the nodes

differently. Using Kruskal's algorithm gives:

O + BLCY

(57+74)+(54+115+150)=450

L + BOCY

(54+57)+(74+83+150)=418

C + BOLY

(54+83)+(57+74+181)=449

Y + BOLC

(150+181)+(54+57+74)=516

The figure of 516 supersedes the other, lower figures (although it

is still true that the shortest tour can't be lower than 418, for

example, it is also true that it can't be lower than 516).

[This method is only guaranteed to work if the network is

complete, and is applicable only to the Classical Problem.]

(9) Stage 5: Upper Bound - Nearest Neighbour Algorithm

This is the standard algorithm for producing an upper bound.

Referring to Figure 5,

(i) Start at any node (eg B)

(ii) Add the shortest arc leading to a new node: BO

(iii) Repeat the process, to give: BO+OL+LC+CY

 fmng.uk

9

(iv) Return to B by the shortest route, to give the cycle:

BOLCYB (74+57+54+150+211=546)

[Note: If only Hamiltonian cycles are acceptable, then we will have

to return to B directly - assuming this is possible (in this case, the

method is only guaranteed to work if the network is complete).]

(v) Repeat the algorithm, with other starting points:

OLCYBO (57+54+150+211+74=546)

LCOBYL (54+83+74+211+204=626)

CLOBYC (54+57+74+211+150=546)

YCLOBY (150+54+57+74+211=546)

Thus we obtain an upper bound of 546. (In general we would take

the lowest of the figures obtained.) However, for this example this

is the figure already obtained from the improvement to the

Minimum Connector method.

Notes

(i) The Nearest Neighbour algorithm resembles Prim's algorithm.

However Prim's algorithm joins the nearest new node to any

existing node, whereas the Nearest Neighbour algorithm joins it

to the last node obtained. Also, Prim's algorithm is designed to

produce a tree and we don't return to the start node.

(ii) It is a 'greedy' algorithm: it doesn't look ahead, and just

maximises the short-term gain (by selecting the nearest node).

(iii) Although the solution will usually be much better than for the

Minimum Connector method described earlier, the Nearest

Neighbour algorithm doesn't usually give the best possible

solution.

 fmng.uk

10

So far we have 'trapped' the shortest possible tour between 516

and 546. However there is no guarantee that a shorter tour than

546 exists.

(10) Stage 6: Tour improvement algorithm

This can be illustrated by referring to Figure 5 again. The three

possibilities that were mentioned earlier were:

BYOCLB (211+181+83+54+115=644)

BYCOLB (211+150+83+57+115=616)

BOYCLB (74+181+150+54+115=574)

Note that BYOCLB is improved by swapping O and C, or by

swapping Y and O.

The algorithm consists of examining each sequence of 4 nodes,

and seeing if an improvement can be obtained by swapping the

middle two nodes.

Thus, for the above example, YCOL gives a shorter distance than

YOCL, and BOYC gives a shorter distance than BYOC.

Using computer language, the algorithm could be written as:

For i = 1 to n

If 𝑑(𝑁𝑖 , 𝑁𝑖+2) + 𝑑(𝑁𝑖+1, 𝑁𝑖+3) < 𝑑(𝑁𝑖 , 𝑁𝑖+1) + 𝑑(𝑁𝑖+2, 𝑁𝑖+3) then

swap 𝑁𝑖+1& 𝑁𝑖+2

Next i

(where 𝑁𝑖 denotes the 𝑖th node, and d denotes distance).

