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Travelling Salesman Problem  (10 pages; 29/6/20)  

 

(1) Terminology 

Walk: (a sequence of arcs, where the end of one arc is the start of 

the next) arcs and nodes can be repeated 

Trail: arcs can't be repeated, but nodes can be 

Path: arcs and nodes can't be repeated 

Tour: a closed walk that visits every node at least once 

Hamiltonian (or sometimes Hamilton) cycle: a closed walk that 

visits every node exactly once (ie a tour for which nodes aren't 

repeated) [Note that in a Hamiltonian cycle arcs can't be repeated 

either (as otherwise this would mean repeated nodes), and so a 

Hamiltonian cycle is a cycle.] 

 

(2) Classical and Practical Problems 

The Classical version of the Travelling Salesman Problem 

(referred to as the 'Classical Problem') is to find the shortest 

Hamiltonian cycle for a network. 

However, a Hamiltonian cycle may not exist (see Figure 1); or, if 

one does exist, it may not give a good solution (see Figure 2, 

where the tour ABACA will usually be preferable to the 

Hamiltonian cycle ABCA; ie the fact that nodes are repeated may 

be tolerated (or may not be an issue anyway).  

If repeated nodes are acceptable (so that the only requirement is 

to find a tour) then the problem is referred to as the 'Practical 

Problem'. 
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Figure 1                                                                Figure 2 

 

Hamiltonian cycles can always be found for a complete graph.  

The Practical problem can always be converted to the Classical 

Problem by creating a network of shortest distances. Note though 

that the solution found will need to be converted back to the 

original form (eg the arc between nodes A and D in the network of 

shortest distances may represent the path ABCD in the original 

network). 

The networks of shortest distances corresponding to the 

networks in Figures 1 & 2 are shown in Figures 3 & 4.  

  

 

Figure 3                                                     Figure 4 
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(Thus, in Figure 3, A is now connected directly to C by an arc of 

weight equal to the shortest distance between A and C in the 

original network.) 

[The so-called 'triangle inequality' is often referred to in 

connection with the network of shortest distances. The idea is 

that a complete network can only be a network of shortest 

distances if the direct arc (AC, say) between two nodes cannot be 

improved on by travelling via another node (say B). It is 

sometimes claimed that the network of shortest distances can be 

created by repeatedly replacing the weight of AC (for example) by 

the sum of the weights of AB and BC, if this gives a smaller value. 

However, every possible triangle in the network would have to be 

examined.] 

 

Some of the algorithms that are available for the Travelling 

Salesman Problem may not work fully if the network is not 

complete. This issue can be avoided by using the network of 

shortest distances. Also, it may be the case that an algorithm gives 

a better solution if the network of shortest distances is used (even 

if the original network is complete). 

Exam questions should make it clear whether a network of 

shortest distances is required. 

 

(3) If a graph is complete and has n nodes, then there will be 
1

2
(𝑛 − 1)! possible tours. (We can choose to start at any node 

(since the tour is circular), and there will be 𝑛 − 1 ways of 

choosing the next node to proceed to (and so on). We divide by 2, 

as reversing the order gives the same tour; eg  ABCDEA is the 

same as AEDCBA. 
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The travelling salesman problem thus has factorial complexity, 

and computers cannot simply examine all the possibilities if n is 

even of moderate size: 

𝑛 = 5:    12 tours 

𝑛 = 10:    181 440 tours 

𝑛 = 15:    4.4 × 1010 tours  

 

(4) Strategy 

Unfortunately no algorithm exists for the travelling salesman 

problem which can determine the optimal solution. The best that 

can be done is to establish upper and lower bounds for the 

shortest length, and then to try and refine these, so that the 

optimal value is shown to lie within a small enough interval; ie 

such that no significant improvement will be obtained from 

further work. 

 

The algorithms that are used to do this (and which are described 

below) are examples of 'heuristic' algorithms; ie they usually 

produce a good solution, but it may not be the best possible one. 

 

Various methods exist for finding tours that have reasonably 

short lengths. The length for any such tour represents an upper 

bound for the shortest distance (ie the shortest distance can't be 

greater than the length found). 

An algorithm also exists for establishing a lower bound for the 

shortest distance (discussed below). This lower bound is not 

usually attainable. All we can say is that a tour cannot have a 

shorter length than this. 
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It is then a matter of continuing to apply the various methods to 

find tours that are shorter than the current upper bound.  

 

(5) Stage 1: Inspection  

 

 

 

 

 

 

 

Figure 5 

 

Referring to the cities example in Figure 5, three possible tours 

(with their total lengths) are: 

BYOCLB (211+181+83+54+115=644) 

BYCOLB (211+150+83+57+115=616) 

BOYCLB (74+181+150+54+115=574) 

 

These lengths have been found by inspection, and so far the upper 

bound for the shortest distance is 574. The following systematic 

methods can be applied to tackle the problem (for a bigger 

network, inspection may not be feasible). 
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(6) Stage 2: Upper Bound from Minimum Connector 

The method is as follows: 

(i) Find a minimum connector for the network. 

(ii) Duplicate each of the arcs. 

This is carried out below: 

  

 

 

 

 

 

 

Figure 6                                                        Figure 7 

 

This produces a length of  (74 + 57 + 54 + 150) × 2 = 670 

This isn't an improvement on the existing upper bound of 574. 

[Note that this method is applicable only to the Practical 

Problem.] 

 

(7) Stage 3: Improving on the upper bound 

The Minimum Connector method can usually be improved on 

significantly by taking one or more shortcuts. 

Referring to Figure 7, we start with BOLCYCLOB: 
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(74 + 57 + 54 + 150) × 2 = 335 × 2 = 670  

This can be replaced with  

BOLCYCOB: 335 + 150 + 83 + 74 = 642 

or with BOLCYOB: 335 + 181 + 74 = 590 

or with BOLCYB: 335 + 211 = 546 

Thus the improved upper bound is 546. 

 

(8) Stage 4: Lower Bound Algorithm (using Minimum Connectors) 

Referring to Figure 5, any Hamiltonian cycle will consist of 2 arcs 

from (eg) B, together with 3 arcs linking O, L, C & Y. 

The minimum total length of 2 arcs from B is 74 + 115 = 189 

To find the minimum total length of arcs linking O, L, C & Y, we 

can find the minimum connector for these nodes.  

Applying Prim's Algorithm, for example, starting at O: 

OL(57) 

OL(57)+LC(54) 

OL(57)+LC(54)+CY(150) = 261 

Alternatively, applying Kruskal's Algorithm: 

LC(54) 

LC(54)+LO(57) 

LC(54)+LO(57)+CY(150) = 261 

Hence the lower bound (so far) is  189+261=450 
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Further lower bounds can be established by dividing up the nodes 

differently. Using Kruskal's algorithm gives: 

O + BLCY    

(57+74)+(54+115+150)=450 

L + BOCY 

(54+57)+(74+83+150)=418 

C + BOLY 

(54+83)+(57+74+181)=449 

Y + BOLC 

(150+181)+(54+57+74)=516 

 

The figure of 516 supersedes the other, lower figures (although it 

is still true that the shortest tour can't be lower than 418, for 

example, it is also true that it can't be lower than 516). 

 

[This method is only guaranteed to work if the network is 

complete, and is applicable only to the Classical Problem.] 

 

(9) Stage  5: Upper Bound - Nearest Neighbour Algorithm 

This is the standard algorithm for producing an upper bound. 

Referring to Figure 5, 

(i) Start at any node (eg B) 

(ii) Add the shortest arc leading to a new node: BO 

(iii) Repeat the process, to give:  BO+OL+LC+CY 
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(iv) Return to B by the shortest route, to give the cycle: 

BOLCYB (74+57+54+150+211=546) 

[Note: If only Hamiltonian cycles are acceptable, then we will have 

to return to B directly - assuming this is possible (in this case, the 

method is only guaranteed to work if the network is complete).] 

(v) Repeat the algorithm, with other starting points: 

OLCYBO (57+54+150+211+74=546) 

LCOBYL (54+83+74+211+204=626) 

CLOBYC (54+57+74+211+150=546) 

YCLOBY (150+54+57+74+211=546) 

Thus we obtain an upper bound of 546. (In general we would take 

the lowest of the figures obtained.) However, for this example this 

is the figure already obtained from the improvement to the 

Minimum Connector method. 

Notes  

(i) The Nearest Neighbour algorithm resembles Prim's algorithm. 

However Prim's algorithm joins the nearest new node to any 

existing node, whereas the Nearest Neighbour algorithm joins it 

to the last node obtained. Also, Prim's algorithm is designed to 

produce a tree and we don't return to the start node. 

(ii) It is a 'greedy' algorithm: it doesn't look ahead, and just 

maximises the short-term gain (by selecting the nearest node).  

(iii) Although the solution will usually be much better than for the 

Minimum Connector method described earlier, the Nearest 

Neighbour algorithm doesn't usually give the best possible 

solution. 
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So far we have 'trapped' the shortest possible tour between 516 

and 546. However there is no guarantee that a shorter tour than 

546 exists. 

 

(10) Stage 6: Tour improvement algorithm 

This can be illustrated by referring to Figure 5 again. The three 

possibilities that were mentioned earlier were: 

BYOCLB (211+181+83+54+115=644) 

BYCOLB (211+150+83+57+115=616) 

BOYCLB (74+181+150+54+115=574) 

Note that BYOCLB is improved by swapping O and C, or by 

swapping Y and O. 

The algorithm consists of examining each sequence of 4 nodes, 

and seeing if an improvement can be obtained by swapping the 

middle two nodes. 

Thus, for the above example, YCOL gives a shorter distance than 

YOCL, and BOYC gives a shorter distance than BYOC. 

Using computer language, the algorithm could be written as: 

For i = 1 to n 

If  𝑑(𝑁𝑖 , 𝑁𝑖+2) + 𝑑(𝑁𝑖+1, 𝑁𝑖+3) < 𝑑(𝑁𝑖 , 𝑁𝑖+1) + 𝑑(𝑁𝑖+2, 𝑁𝑖+3)  then 

swap 𝑁𝑖+1& 𝑁𝑖+2 

Next i  

(where 𝑁𝑖  denotes the 𝑖th node, and d denotes distance). 

 

 


