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Travelling Salesman Problem  (15/1/2014) 

Finding the shortest sequence of arcs that visits each node at least 

once, returning to the starting point. 

 

Figure 1 

 

For a complete graph, such as 𝐾5 in Figure 1, it is always possible 

to find a cycle (ie a closed path that doesn't repeat arcs or nodes) 

that  visits each node exactly once. Such a cycle is referred to as a 

Hamiltonian cycle, and the travelling salesman problem is often 

expressed in the stronger form of requiring the sequence of arcs 

to be a Hamiltonian cycle. A Hamiltonian cycle is also called a 

'tour'. 

 

Figure 2 
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Figure 2 shows a graph (or 'network', as it has weights) which 

contains no Hamiltonian cycles. In this case, the travelling 

salesman problem can only be solved by permitting both arcs and 

nodes to be repeated. 

 

Figure 3 

 

For figure 3, a Hamiltonian cycle exists, but it clearly doesn't give 

the best solution. It would be better to voluntarily repeat arcs and 

nodes. 

If we are insisting on only following Hamiltonian cycles then the 

problem is termed the 'Classical' problem; otherwise it is referred 

to as the 'Practical' problem. In the latter case, the only 

requirement is for each node to be visited at least once (as well as 

returning to the starting point). 

Some of the methods described below for finding the best 

solution may only be applicable to one or other of these types of 

problem. However, it will be seen that the Practical problem can 

always be expressed in the form of a Classical problem, thereby 

making extra methods available. 

If a graph is complete and has n nodes, then there will be 
1

2
(𝑛 − 1)! possible tours. (We can choose to start at any node 
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(since the tour is circular), and there will be 𝑛 − 1 ways of 

choosing the next node to proceed to (and so on). We divide by 2 

because reversing the order gives the same tour; eg  ABCDEA is 

the same as AEDCBA. 

The travelling salesman problem thus has factorial complexity, 

and computers cannot simply examine all the possibilities if n is 

even of moderate size: 

𝑛 = 5:    12 tours 

𝑛 = 10:    181 440 tours 

𝑛 = 15:    4.4 × 1010 tours  

Unfortunately no algorithm exists for the travelling salesman 

problem which can determine the optimal solution. The best that 

can be done is to establish upper and lower bounds for the 

shortest length, and then to try and refine these, so that the 

optimal value is shown to lie within a small enough interval; ie 

such that no significant improvement will be obtained from 

further work. 
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Figure 4 

Referring to the cities example in Figure 4, three possibilities 

(with their total lengths) are: 

BYOCLB (211+181+83+54+115=644) 

BYCOLB (211+150+83+57+115=616) 

BOYCLB (74+181+150+54+115=574) 

 

The following systematic methods can be applied to tackle the 

problem. 

 

Upper Bound 

For the Practical problem, we can start by establishing an upper 

bound for the shortest length. 

The steps are as follows: 

(1) Find a minimum connector for the whole network. 

(2) Duplicate each of the arcs. 

This is carried out below for the cities network in Figure 4. 
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Figure 5 

 

Figure 6 

 

Upper bound = (74+57+54+150)x2=670 

 

Lower Bound 

[This method is only guaranteed to work if the network is 

complete.] 

Referring to Figure 4, any Hamiltonian cycle will consist of 2 arcs 

from (eg) B, together with 3 arcs linking O, L, C & Y. 
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The minimum total length of 2 arcs from B is 74+115=189 

To find the minimum total length of arcs linking O, L, C & Y, we 

can find the minimum connector for these nodes. This is done 

below by three methods. 

Prim's Algorithm 

eg starting at O: 

OL(57) 

OL(57)+LC(54) 

OL(57)+LC(54)+CY(150) = 261 

Kruskal's Algorithm 

LC(54) 

LC(54)+LO(57) 

LC(54)+LO(57)+CY(150) = 261 

 

Removing the longest arcs: 

(181+150+83+57+54)-181-83 = 261 

 

Hence the lower bound is  189+261=450 

 

Further lower bounds can be established by dividing up the nodes 

differently. Using Kruskal's algorithm gives: 

O + BLCY    

(57+74)+(54+115+150)=450 

L + BOCY 
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(54+57)+(74+83+150)=418 

C + BOLY 

(54+83)+(57+74+181)=449 

Y + BOLC 

(150+181)+(54+57+74)=516 

 

The figure of 516 supersedes the other, lower figures (although it 

is still true that the shortest tour can't be lower than 418, it is also 

true that it can't be lower than 516). 

Nearest Neighbour Algorithm 

This is another way of producing an upper bound, as the 

algorithm finds a tour that works; ie the shortest possible tour 

will have a length less than or equal to the value obtained. 

The method is only guaranteed to work if the network is 

complete. 

Referring to Figure 4, 

(1) Start at any node (eg B) 

(2) Add the shortest arc leading to a new node: BO 

(3) Repeat the process, to give:  BO+OL+LC+CY 

(4) Return directly to the start node, to give the cycle: 

BOLCYB (74+57+54+150+211=546) 

(5) Repeat the algorithm, with other starting points: 

OLCYBO (57+54+150+211+74=546) 

LCOBY: can't return to L 
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CLOBY: can't return to C 

YCLOBY (150+54+57+74+211=546) 

In general we would take the lowest of the figures obtained.  

 

The Nearest Neighbour algorithm resembles Prim's algorithm. 

However Prim's algorithm joins the nearest new node to any 

existing node, whereas the Nearest Neighbour algorithm joins it 

to the last node obtained. Also, Prim's algorithm is designed to 

produce a tree and we don't return to the start node. 

 

Notes on the Nearest Neighbour Algorithm 

(i) It is a 'greedy' algorithm: it doesn't look ahead, and just 

maximises the short-term gain (by selecting the nearest node). 

This is similar to a chess player who sees that a piece can be 

taken, without considering the longer-term consequences.  

(ii) As seen above, it doesn't always work. 

(iii) Although the solution will usually be much better than for the 

"Upper Bound" method described earlier, the Nearest Neighbour 

algorithm doesn't usually give the best possible solution. 

 

Improving on the Upper Bound 

The 'Upper Bound' method can usually be improved on 

significantly by taking one or more shortcuts. 

Referring to Figure 6, we start with BOLCYCLOB: 

(74 + 57 + 54 + 150) × 2 = 335 × 2 = 670  

This can be replaced with  
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BOLCYCOB: 335 + 150 + 83 + 74 = 642 

or with BOLCYOB: 335 + 181 + 74 = 590 

or with BOLCYB: 335 + 211 = 546 

In this case, we have succeeded in bringing the value down to that 

obtained by the Nearest Neighbour algorithm. 

So far we have 'trapped' the shortest possible tour between 516 

and 546. However there is no guarantee that a shorter tour than 

546 exists. 

 

 

Tour improvement algorithm 

This can be illustrated by referring to Figure 4 again. The three 

possibilities that were mentioned earlier were: 

BYOCLB (211+181+83+54+115=644) 

BYCOLB (211+150+83+57+115=616) 

BOYCLB (74+181+150+54+115=574) 

 

Note that BYOCLB is improved by swapping O and C, or by 

swapping Y and O. 

The algorithm consists of examining each sequence of 4 nodes, 

and seeing if an improvement can be obtained by swapping the 

middle two nodes. 

Thus, for the above example, YCOL gives a shorter distance than 

YOCL, and BOYC gives a shorter distance than BYOC. 

Using computer language, the algorithm could be written as: 
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For i = 1 to n 

If  𝑑(𝑁𝑖 , 𝑁𝑖+2) + 𝑑(𝑁𝑖+1, 𝑁𝑖+3) < 𝑑(𝑁𝑖 , 𝑁𝑖+1) + 𝑑(𝑁𝑖+2, 𝑁𝑖+3)  then 

swap 𝑁𝑖+1& 𝑁𝑖+2 

Next i 

(where 𝑁𝑖  denotes the 𝑖th node, and d denotes distance). 

 

Converting from the practical problem to the classical 

problem 

For the network in Figure 2, no Hamiltonian cycle exists. We may 

wish to convert this network into a complete network; eg in order 

to be able to use the Nearest Neighbour algorithm (which is only 

guaranteed to work if the network is complete).  

This can be done by creating the network of shortest distances, as 

in Figure 7 below. 

 

Figure 7 

 

(Thus A is now connected directly to C by an arc of weight equal 

to the shortest distance between A and C in the original network.) 
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Note that, although the Practical problem has been converted to 

the Classical problem, we are not pretending that the solution 

obtained won't involve repeating nodes in the original network.  

We may also wish to 'voluntarily' use the network of shortest 

distances. For example, in Figure 3 we saw that the Hamiltonian 

cycle ABC does not give the best solution. Figure 8 below shows 

the equivalent network of shortest distances, to which the 

Classical problem can be applied (though clearly in this simple 

case there is no need to apply any of the methods described in 

this note). 

 

 

Figure 8 

 

 

 

 


