STEP - Vectors
(1) $\underline{d}=\underline{a}+k \overrightarrow{A B}$
(2) $\underline{d}=(1-\lambda) \underline{a}+\lambda \underline{b}$

(3) $\underline{d}=\mu \underline{c}$
(4) $p \underline{a}+q \underline{b}=r \underline{a}+s \underline{b} \Rightarrow p=r \& q=s$

Show that if $|\underline{a}-\underline{b}|=|\underline{a}+\underline{b}|$, then $\underline{a} \& \underline{b}$ are perpendicular (for non-zero $\underline{a} \& \underline{b}$.

Solution

$$
\begin{aligned}
& |\underline{a}-\underline{b}|=|\underline{a}+\underline{b}| \Rightarrow|\underline{a}-\underline{b}|^{2}=|\underline{a}+\underline{b}|^{2} \\
& \Rightarrow(\underline{a}-\underline{b}) \cdot(\underline{a}-\underline{b})=(\underline{a}+\underline{b}) \cdot(\underline{a}+\underline{b}) \\
& {\left[\underline{x} \cdot \underline{x}=|\underline{x}||\underline{x}| \cos 0^{\circ}=|\underline{x}|^{2}\right]} \\
& \Rightarrow \underline{a} \cdot \underline{a}-\underline{a} \cdot \underline{b}-\underline{b} \cdot \underline{a}+\underline{b} \cdot \underline{b}=\underline{a} \cdot \underline{a}+\underline{a} \cdot \underline{b}+\underline{b} \cdot \underline{a}+\underline{b} \cdot \underline{b} \\
& \Rightarrow-2 \underline{a} \cdot \underline{b}=2 \underline{a} \cdot \underline{b} \quad[\text { since } \underline{a} \cdot \underline{b}=\underline{b} \cdot \underline{a}] \\
& \Rightarrow \underline{a} \cdot \underline{b}=0
\end{aligned}
$$

and hence $\underline{a} \& \underline{b}$ are perpendicular
[Geometrically, $|\underline{a}-\underline{b}| \&|\underline{a}+\underline{b}|$ are the 'short' and 'long' diagonals of the parallelogram formed from the adjacent sides $\underline{a} \& \underline{b}$. When these diagonals are equal, the parallelogram is a rectangle.]

In the diagram below, OABC is a square, M is the midpoint of OA , $B Q$ is a quarter of $B C$, and P is the intersection of $A C$ and $M Q$.

If $\underline{a}=\overrightarrow{O A}$ and $\underline{c}=\overrightarrow{O C}$, show that $\overrightarrow{O P}=\frac{3}{5} \underline{a}+\frac{2}{5} \underline{c}$

Solution

Let $\overrightarrow{O P}=\alpha \underline{a}+\gamma \underline{c}$
To take account of the fact that P lies on AC , we can write:
$\overrightarrow{A P}=\lambda \overrightarrow{A C}$,
so that $\overrightarrow{O P}-\overrightarrow{O A}=\lambda(\overrightarrow{O C}-\overrightarrow{O A})$
and $\alpha \underline{a}+\gamma \underline{c}-\underline{a}=\lambda \underline{c}-\lambda \underline{a}$
or $(\alpha-1+\lambda) \underline{a}=(\lambda-\gamma) \underline{c}$
Then, as \underline{a} and \underline{c} aren't parallel, the only possibility is that
$\alpha-1+\lambda=0$ and $\lambda-\gamma=0$
so that $\alpha-1+\gamma=0$

Similarly, to take account of the fact that P lies on MQ, we can write: $\overrightarrow{M P}=\mu \overrightarrow{M Q}$,
so that $\overrightarrow{O P}-\overrightarrow{O M}=\mu(\overrightarrow{M O}+\overrightarrow{O C}+\overrightarrow{C Q})$
and $\alpha \underline{a}+\gamma \underline{c}-\frac{1}{2} \underline{a}=\mu\left(-\frac{1}{2} \underline{a}+\underline{c}+\frac{3}{4} \underline{a}\right)$
or $\left(\alpha-\frac{1}{2}-\frac{1}{4} \mu\right) \underline{a}=(\mu-\gamma) \underline{c}$
and so, as before, $\alpha-\frac{1}{2}-\frac{1}{4} \mu=0$ and $\mu-\gamma=0$,
giving $\alpha-\frac{1}{2}-\frac{1}{4} \gamma=0$
Then, subtracting (2) from (1) gives
$-\frac{1}{2}+\frac{5}{4} \gamma=0$, so that $\gamma=\frac{2}{5}$, and $\alpha=1-\gamma=\frac{3}{5}$
and $\overrightarrow{O P}=\frac{3}{5} \underline{a}+\frac{2}{5} \underline{c}$, as required.

Use vectors to prove that the mid-points of the sides of any quadrilateral form the vertices of a parallelogram.

Solution

Referring to the diagram (where $\underline{a}=\overrightarrow{O A}$ etc),
$\underline{q}-\underline{p}=\frac{1}{2}(\underline{b}+\underline{c})-\frac{1}{2}(\underline{a}+\underline{b})=\frac{1}{2}(\underline{c}-\underline{a})$
and $\underline{r}-\underline{s}=\frac{1}{2}(\underline{c}+\underline{d})-\frac{1}{2}(\underline{a}+\underline{d})=\frac{1}{2}(\underline{c}-\underline{a})=\underline{q}-\underline{p}$
So the sides $P Q \& S R$ are of equal length and parallel.
This means that $P Q R S$ is a parallelogram.

