STEP 2\&3 - Trigonometry

Solve $\sin \theta=\cos 4 \theta$ for $0<\theta<\pi$

Solve $\sin \theta=\cos 4 \theta$ for $0<\theta<\pi$

Solution

$\sin \theta=\sin \left(\frac{\pi}{2}-4 \theta\right)$
Hence $\theta=\frac{\pi}{2}-4 \theta+2 n \pi$ (1) or $\theta=\left(\pi-\left[\frac{\pi}{2}-4 \theta\right]\right)+2 n \pi$
From (1), $5 \theta=\frac{\pi(1+4 n)}{2}$, so that $\theta=\frac{\pi(1+4 n)}{10}$
giving $\theta=\frac{\pi}{10}, \frac{\pi}{2}$ or $\frac{9 \pi}{10}$
From (2), $-3 \theta=\frac{\pi(1+4 n)}{2}$, so that $\theta=\frac{-\pi(1+4 n)}{6}$
giving $\theta=\frac{\pi}{2}$ again
Thus, the solutions are $\theta=\frac{\pi}{10}, \frac{\pi}{2}$ or $\frac{9 \pi}{10}$
A sketch confirms that these are plausible.

Write $\sqrt{2(1-\cos \theta)}$ and $\sqrt{2(1+\cos \theta)}$ in the form $\operatorname{asin}(b \theta)$ or $a \cos (b \theta)$
[Write $\sqrt{2(1-\cos \theta)}$ and $\sqrt{2(1+\cos \theta)}$ in the form $\operatorname{asin}(b \theta)$ or $\operatorname{acos}(b \theta)$]

Solution

$\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta$,
so that $1-\cos (2 \theta)=2 \sin ^{2} \theta$
and hence $\sqrt{2(1-\cos \theta)}=2 \sin \left(\frac{\theta}{2}\right)$

Also, $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1$,
so that $1+\cos (2 \theta)=2 \cos ^{2} \theta$
and hence $\sqrt{2(1+\cos \theta)}=2 \cos \left(\frac{\theta}{2}\right)$

Show that $\cos ^{4} \theta+\sin ^{4} \theta=1-\frac{1}{2} \sin ^{2}(2 \theta)$
[Show that $\left.\cos ^{4} \theta+\sin ^{4} \theta=1-\frac{1}{2} \sin ^{2}(2 \theta)\right]$

Solution

Consider
$1=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)^{2}=\cos ^{4} \theta+\sin ^{4} \theta+2 \cos ^{2} \theta \sin ^{2} \theta$
Then $\cos ^{4} \theta+\sin ^{4} \theta=1-2 \cos ^{2} \theta \sin ^{2} \theta=1-\frac{1}{2}(2 \cos \theta \sin \theta)^{2}$
$=1-\frac{1}{2} \sin ^{2}(2 \theta)$, as required.

What is the period of $2 \sin \left(3 x+\frac{\pi}{4}\right)+3 \cos \left(\frac{2 x}{3}-\frac{\pi}{3}\right)$?
[What is the period of $2 \sin \left(3 x+\frac{\pi}{4}\right)+3 \cos \left(\frac{2 x}{3}-\frac{\pi}{3}\right)$?]

Solution

The period T_{1} of $2 \sin \left(3 x+\frac{\pi}{4}\right)$ satisfies $3 T_{1}=2 \pi$
$\left[\right.$ as $\left.2 \sin \left(3[0]+\frac{\pi}{4}\right)=2 \sin \left(2 \pi+\frac{\pi}{4}\right)\right] ;$ ie $T_{1}=\frac{2 \pi}{3}$
Similarly for $3 \cos \left(\frac{2 x}{3}-\frac{\pi}{3}\right), \frac{2 T_{2}}{3}=2 \pi$, so that $T_{2}=3 \pi$
The period of the sum of these functions is the LCM of these two periods; ie 6π.

Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove the Angle Bisector Theorem.

Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{B D}{D C}=\frac{A B}{A C}$. Prove the Angle Bisector Theorem.

Solution

By the Sine rule for triangle $\mathrm{ABD}, \frac{B D}{\sin \theta}=\frac{A B}{\sin A D B}$
and, for triangle ADC, $\frac{D C}{\sin \theta}=\frac{A C}{\sin A D C}=\frac{A C}{\sin A D B}$
Then (1) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{B D}{A B}$ and (2) $\Rightarrow \frac{\sin \theta}{\sin A D B}=\frac{D C}{A C}$
so that $\frac{B D}{A B}=\frac{D C}{A C}$
and hence $\frac{B D}{D C}=\frac{A B}{A C}$

