STEP 2&3 – Trigonometry

Solve $sin\theta = cos4\theta$ for $0 < \theta < \pi$

Solve $sin\theta = cos4\theta$ for $0 < \theta < \pi$

Solution

 $sin\theta = sin(\frac{\pi}{2} - 4\theta)$ Hence $\theta = \frac{\pi}{2} - 4\theta + 2n\pi (1)$ or $\theta = \left(\pi - \left[\frac{\pi}{2} - 4\theta\right]\right) + 2n\pi (2)$ From (1), $5\theta = \frac{\pi(1+4n)}{2}$, so that $\theta = \frac{\pi(1+4n)}{10}$ giving $\theta = \frac{\pi}{10}$, $\frac{\pi}{2}$ or $\frac{9\pi}{10}$ From (2), $-3\theta = \frac{\pi(1+4n)}{2}$, so that $\theta = \frac{-\pi(1+4n)}{6}$ giving $\theta = \frac{\pi}{2}$ again Thus, the solutions are $\theta = \frac{\pi}{10}$, $\frac{\pi}{2}$ or $\frac{9\pi}{10}$

A sketch confirms that these are plausible.

Write $\sqrt{2(1 - \cos\theta)}$ and $\sqrt{2(1 + \cos\theta)}$ in the form $asin(b\theta)$ or $acos(b\theta)$

[Write $\sqrt{2(1 - \cos\theta)}$ and $\sqrt{2(1 + \cos\theta)}$ in the form $asin(b\theta)$ or $acos(b\theta)$]

Solution

 $cos(2\theta) = cos^2\theta - sin^2\theta = 1 - 2sin^2\theta$, so that $1 - cos(2\theta) = 2sin^2\theta$ and hence $\sqrt{2(1 - cos\theta)} = 2sin(\frac{\theta}{2})$

Also, $cos(2\theta) = cos^2\theta - sin^2\theta = 2cos^2\theta - 1$, so that $1 + cos(2\theta) = 2cos^2\theta$ and hence $\sqrt{2(1 + cos\theta)} = 2cos(\frac{\theta}{2})$

Show that
$$cos^4\theta + sin^4\theta = 1 - \frac{1}{2}sin^2(2\theta)$$

[Show that $cos^4\theta + sin^4\theta = 1 - \frac{1}{2}sin^2(2\theta)$]

Solution

Consider

$$1 = (\cos^2\theta + \sin^2\theta)^2 = \cos^4\theta + \sin^4\theta + 2\cos^2\theta\sin^2\theta$$

Then $\cos^4\theta + \sin^4\theta = 1 - 2\cos^2\theta\sin^2\theta = 1 - \frac{1}{2}(2\cos\theta\sin\theta)^2$
 $= 1 - \frac{1}{2}\sin^2(2\theta)$, as required.

What is the period of $2\sin\left(3x + \frac{\pi}{4}\right) + 3\cos\left(\frac{2x}{3} - \frac{\pi}{3}\right)$?

[What is the period of $2\sin\left(3x + \frac{\pi}{4}\right) + 3\cos\left(\frac{2x}{3} - \frac{\pi}{3}\right)$?]

Solution

The period T_1 of $2 \sin\left(3x + \frac{\pi}{4}\right)$ satisfies $3T_1 = 2\pi$ [as $2\sin\left(3[0] + \frac{\pi}{4}\right) = 2\sin\left(2\pi + \frac{\pi}{4}\right)$]; ie $T_1 = \frac{2\pi}{3}$ Similarly for $3\cos\left(\frac{2x}{3} - \frac{\pi}{3}\right), \frac{2T_2}{3} = 2\pi$, so that $T_2 = 3\pi$

The period of the sum of these functions is the LCM of these two periods; ie 6π .

Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{BD}{DC} = \frac{AB}{AC}$. Prove the Angle Bisector Theorem.

Angle Bisector Theorem

Referring to the diagram below, the Angle Bisector theorem says that $\frac{BD}{DC} = \frac{AB}{AC}$. Prove the Angle Bisector Theorem.

Solution

By the Sine rule for triangle ABD, $\frac{BD}{sin\theta} = \frac{AB}{sinADB}$ (1) and, for triangle ADC, $\frac{DC}{sin\theta} = \frac{AC}{sinADC} = \frac{AC}{sinADB}$ (2) Then (1) $\Rightarrow \frac{sin\theta}{sinADB} = \frac{BD}{AB}$ and (2) $\Rightarrow \frac{sin\theta}{sinADB} = \frac{DC}{AC}$ so that $\frac{BD}{AB} = \frac{DC}{AC}$ and hence $\frac{BD}{DC} = \frac{AB}{AC}$