STEP - Series

Triangular numbers are defined as follows:

 $T_r = \frac{1}{2}r(r+1)$ for integer $r \ge 1$

Prove that $\sum_{r=1}^{\infty} \frac{1}{T_r} = 2$

Solution

$$\sum_{r=1}^{\infty} \frac{1}{T_r} = 2 \sum_{r=1}^{\infty} \frac{1}{r(r+1)} = 2 \sum_{r=1}^{\infty} \left(\frac{1}{r} - \frac{1}{r+1}\right)$$
$$= 2 \left\{ \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots\right) - \left(\frac{1}{2} + \frac{1}{3} + \cdots\right) \right\} = 2$$

Perfect powers are defined as follows:

 m^k for integer $m \ge 2$ & integer $k \ge 2$

Prove that the sum of the reciprocals of all perfect powers is 1 (including duplicates; eg $4^2 = 2^4$).

Solution

$$\sum_{m=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{m^k} = \sum_{m=2}^{\infty} \frac{\frac{1}{m^2}}{1 - \frac{1}{m}} = \sum_{m=2}^{\infty} \frac{1}{m(m-1)} = \sum_{m=2}^{\infty} (\frac{1}{m-1} - \frac{1}{m})$$
$$= \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots\right) - \left(\frac{1}{2} + \frac{1}{3} + \cdots\right) = 1$$

fmng.uk

$\sum_{r=1}^{\infty} ra^r$

Solution

$$\sum_{r=1}^{\infty} ra^{r} = a \frac{d}{da} \sum_{r=1}^{\infty} a^{r} = a \frac{d}{da} \left(\frac{a}{1-a}\right) \quad \text{(when } |a| < 1\text{)}$$
$$= a \cdot \frac{(1-a)-a(-1)}{(1-a)^{2}} = \frac{a}{(1-a)^{2}}$$