Selections

(i) Number of ways of selecting r distinct items from n, if repetitions are allowed, and order is important

Solution

Number of ways of selecting r items from n, if repetitions are allowed, and order is important $=n^{r}$
(ii) Number of ways of selecting r items from n, if repetitions are not allowed, and order is important

Solution

Number of ways of selecting r items from n, if repetitions are not allowed, and order is important
$=n(n-1) \ldots(n-[r-1])=n(n-1) \ldots(n-r+1)$
[known as a Permutation]
$P(n, r)$ or ${ }^{n} P_{r}=\frac{n!}{(n-r)!}=n(n-1) \ldots(n-r+1)$
(iii) Number of ways of selecting r items from n, if repetitions are not allowed, and order is not important

Solution

Number of ways of selecting r items from n, if repetitions are not allowed, and order is not important [known as a Combination]
$C(n, r)$ or ${ }^{n} C_{r}$ or $\binom{n}{r}=\frac{n!}{r!(n-r)!}=\frac{n(n-1) \ldots(n-r+1)}{r!}$
[${ }^{n} C_{r}$ can be obtained from ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$ by dividing by r ! , to remove duplication (the ${ }^{n} P_{r}$ ordered ways can be divided into groups of r !, containing the same items, but in a different order).]
(iv) Number of ways of selecting r items from n, if repetitions are allowed, and order is not important.
[Number of ways of selecting r items from n, if repetitions are allowed, and order is not important.]

Solution

eg $B B C E$ selected from $A B C D E F(r=4, n=6)$
write as $|X X| X||X|$
(| indicates that we are moving on to the next letter, and XX indicates that we are selecting 2 items from the current letter: so $|X X| X||X|$ means: move on to B (without selecting any As); then select 2 Bs ; then move on to the Cs ; select 1 C ; move on to D , and then on to E ; select 1 E ; then move on to F , but select no Fs)
$=$ Number of ways of choosing r positions for the Xs, out of the $n-1 \mid s$ and r Xs (giving a total of $n-1+r$)
$=\binom{n-1+r}{r}$

Prove that $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$ [where $\left.\binom{n}{r} \equiv{ }^{n} C_{r}\right]$

Prove that $\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}$

Solution

If r items are to be chosen from n items, then either the 1 st item is included or it isn't.

If it is included, then there are $\binom{n-1}{r-1}$ ways of choosing the remaining $r-1$ items that are required.
If it isn't included, then there are $\binom{n-1}{r}$ ways of choosing the remaining r items that are required.
This gives a total of $\binom{n-1}{r-1}+\binom{n-1}{r}$ ways of choosing the r items.

