STEP: Rearrangements – Ideas & Exercises

(13 pages; 4/7/25)

(1) Rearranging an expression or equation eg in order for an earlier result to be used

 $\int \frac{1+x}{x-1} \, dx$

$$\int \frac{1+x}{x-1} \, dx = \int \frac{x-1}{x-1} \, dx + \int \frac{2}{x-1} \, dx$$

(2) Graphical v algebraic approach

eg integer $x, y \rightarrow$ points on a grid

How many solutions are there to $x^3 - 6x^2 + 9x + 2 = 0$?

How many solutions are there to $x^3 - 6x^2 + 9x + 2 = 0$?

Solution

 $\Leftrightarrow x(x^2 - 6x + 9) = -2$ $\Leftrightarrow x(x - 3)^2 = -2$

So one solution, from graph of $y = x(x - 3)^2$

(3) Substitution

Solve the equation $x - \sqrt{x} = 6$

Solve the equation $x - \sqrt{x} = 6$

Solution

Method 1

Let $y = \sqrt{x}$, so that $x - \sqrt{x} - 6 = 0 \Rightarrow y^2 - y - 6 = 0$ $\Rightarrow (y+2)(y-3) = 0$ $\Rightarrow y = -2$ (reject as \sqrt{x} must be ≥ 0) or y = 3Method 2 Let $f(x) = x - \sqrt{x} - 6$ $f(x) = 0 \Rightarrow x - 6 = \sqrt{x}$ $\Rightarrow (x-6)^2 = x$, but this may include spurious solutions [of $x - 6 = -\sqrt{x}$] $\Rightarrow x^2 - 13x + 36 = 0$ $\Rightarrow (x-9)(x-4) = 0$ $\Rightarrow x = 9 \text{ or } x = 4$ f(9) = 0 & f(4) = -4Thus the only solution is x = 9[Let $g(x) = x + \sqrt{x} - 6 = 0$ Then $g(x) = 0 \Rightarrow (x - 6)^2 = x$ as well $g(9) \neq 0$, and g(4) = 0

Find
$$\frac{d}{dx}(a^x)$$

Find
$$\frac{d}{dx}(a^x)$$

Solution

Method 1

Let
$$a = e^b$$
. Then $\frac{d}{dx}(a^x) = \frac{d}{dx}(e^{bx}) = be^{bx} = lna. a^x$

Method 2

Let $y = a^x$. Then lny = xlna,

Find all positive integer solutions of the equation

xy - 8x + 6y = 90

Find all positive integer solutions of the equation

xy - 8x + 6y = 90

Solution

[Aiming for something of the form f(x)g(y) = c, where c is an integer:]

xy - 8x + 6y = (x + 6)(y - 8) + 48,

so that the original equation is equivalent to

(x+6)(y-8) = 42

The positive integer solutions are given by:

x + 6 = 7, y - 8 = 6

x + 6 = 14, y - 8 = 3

x + 6 = 21 y - 8 = 2

x + 6 = 42, y - 8 = 1,

so that the solutions are:

$$x = 1, y = 14$$

 $x = 8, y = 11$
 $x = 15, y = 10$
 $x = 36, y = 9$

Can n^3 equal n + 12345670 (where *n* is a positive integer)?

Can n^3 equal n + 12345670 (where *n* is a positive integer)?

Solution

Rearrange to $n^3 - n = 12345670$

 $n^3 - n = n(n^2 - 1) = n(n - 1)(n + 1)$, and one of these factors must be a multiple of 3; whereas 12345670 is not a multiple of 3 (since 1 + 2 + 3 + 4 + 5 + 6 + 7 + 0 isn't a multiple of 3); so answer is No.

From 2023/P3/Q7:

(iv) Let k be a continuous function defined for $0 \le x \le 1$ and a be a real number, such that

$$\int_0^1 e^{ax} (\mathbf{k}(x))^2 \, \mathrm{d}x = 2 \int_0^1 \mathbf{k}(x) \, \mathrm{d}x + \frac{e^{-a}}{a} - \frac{1}{a^2} - \frac{1}{4} \, .$$

Show that a must be equal to 2 and find k.

Solution

Consider
$$\int_{0}^{1} (e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}})^{2} dx$$

$$= \int_{0}^{1} e^{ax} (k(x))^{2} dx + \int_{0}^{1} e^{-ax} dx - 2 \int_{0}^{1} k(x) dx$$

$$= \frac{e^{-a}}{a} - \frac{1}{a^{2}} - \frac{1}{4} + [-\frac{1}{a}e^{-ax}]_{0}^{1}$$

$$= \frac{e^{-a}}{a} - \frac{1}{a^{2}} - \frac{1}{4} - \frac{1}{a}(e^{-a} - 1) = -\frac{1}{a^{2}} - \frac{1}{4} + \frac{1}{a}$$

$$= -\frac{(4+a^{2}-4a)}{4a^{2}}$$

$$= -\frac{(a-2)^{2}}{4a^{2}}$$
Now $\int_{0}^{1} (e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}})^{2} dx \ge 0$, whilst $= -\frac{(a-2)^{2}}{4a^{2}} \le 0$,
and so $\frac{(a-2)^{2}}{4a^{2}} = 0$, and therefore $a = 2$,
and $\int_{0}^{1} (e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}})^{2} dx = 0$,
so that $e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}} = 0$,
and hence $k(x) = e^{-ax} = e^{-2x}$.