Proof

Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b}<\frac{a+c}{b+c}$ when $a<b$.
[Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b}<\frac{a+c}{b+c}$ when $a<b$.]
(1) What is wrong with the following:

$$
\begin{aligned}
& \frac{a}{b}<\frac{a+c}{b+c} \Rightarrow a(b+c)<b(a+c)(\text { as } b>0 \& b+c>0) \\
& \Rightarrow a c<b c \Rightarrow a<b(\text { as } c>0)
\end{aligned}
$$

[Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b}<\frac{a+c}{b+c}$ when $a<b$.]
(2) What is wrong with the following:

$$
\begin{aligned}
& \frac{a}{b}<\frac{a+c}{b+c} \Leftrightarrow a(b+c)<b(a+c)(\text { as } b>0 \& b+c>0) \\
& \Leftrightarrow a c<b c \Leftrightarrow a<b(\text { as } c>0)
\end{aligned}
$$

Given that $a, b \& c$ are positive numbers, prove that $\frac{a}{b}<\frac{a+c}{b+c}$ when $a<b$.]

Improved solution:

$$
\begin{aligned}
& \frac{a}{b}<\frac{a+c}{b+c} \Leftrightarrow a(b+c)<b(a+c)(\text { as } b>0 \& b+c>0) \\
& \Leftrightarrow a c<b c \Leftrightarrow a<b(\text { as } c>0)
\end{aligned}
$$

So $a<b \Rightarrow \frac{a}{b}<\frac{a+c}{b+c}$; ie $\frac{a}{b}<\frac{a+c}{b+c}$ when $a<b$, as required.

The following are equivalent:
[Given that $a, b \& c$ are positive numbers]
(a) $\frac{a}{b}<\frac{a+c}{b+c} \Leftrightarrow a<b$ [implies and is implied by]
(b) $\frac{a}{b}<\frac{a+c}{b+c}$ if and only if $a<b$ [ought to be "only if and if"]
(c) $\frac{a}{b}<\frac{a+c}{b+c}$ is a necessary \& sufficient condition for $a<b$ [ought to be "is a sufficient \& necessary condition for"]

Given that n is a positive integer, prove that n is odd if and only if n^{2} is odd.
[Given that n is a positive integer, prove that n is odd if and only if n^{2} is odd.]

Solution

Part 1: To prove that n is odd $\Rightarrow n^{2}$ is odd
If n is odd, then it can be written as $2 m+1$, for some integer m.
Then $n^{2}=(2 m+1)^{2}=4 m^{2}+4 m+1=2\left(2 m^{2}+2 m\right)+1$, so that n^{2} is odd.

Thus n is odd $\Rightarrow n^{2}$ is odd; ie n is odd only if n^{2} is odd.
Part 2: To prove that n^{2} is odd $\Rightarrow n$ is odd
[Proof by contradiction]
If n^{2} is odd, suppose that n is even. Then $n=2 m$, for some integer m.

But then $n^{2}=(2 m)^{2}=4 m^{2}$, which is divisible by 2 , and so even.
This contradicts the fact that n^{2} is odd, and so n must be odd.
Thus n^{2} is odd $\Rightarrow n$ is odd; ie n is odd if n^{2} is odd.
[Alternatively, prove that " n not odd $\Rightarrow n^{2}$ is not odd"]

So n is odd if and only if n^{2} is odd.

If $x>1$, show that $x-\sqrt{x^{2}-1}<1$
[If $x>1$, show that $\left.x-\sqrt{x^{2}-1}<1\right]$

Solution

Suppose that $x-\sqrt{x^{2}-1} \geq 1 \quad\left(^{*}\right)$
Then $x-1 \geq \sqrt{x^{2}-1}$
and so, as the RHS is non-negative, $(x-1)^{2} \geq x^{2}-1$
$\Rightarrow-2 x+1 \geq-1$
$\Rightarrow 2 \geq 2 x$
$\Rightarrow x \leq 1$, which contradicts the fact that $x>1$.
Thus $\left({ }^{*}\right)$ is not possible, and so $x-\sqrt{x^{2}-1}<1$.

Show that if $X>1 \& Y>1$, then $X+Y<X Y+1$
[Show that if $X>1 \& Y>1$, then $X+Y<X Y+1$]
Solution
$X+Y<X Y+1 \Leftrightarrow X+Y-X Y-1<0$
$\Leftrightarrow X(1-Y)+Y-1<0$
$\Leftrightarrow(X-1)(1-Y)<0$
$\Leftrightarrow(X-1)(Y-1)>0$
Then $X>1 \& Y>1 \Rightarrow(X-1)(Y-1)>0 \Rightarrow X+Y<X Y+1$

Devices for "If and only if proofs"

eg "A \& B are true if and only if C, D \& E are true" (*)

Device 1: Suppose that $A \Leftrightarrow C$ can be proved.
Then (*) reduces to "B is true if and only if D \& E are true"

Device 2: It may be possible to assert that A and C are equivalent. (eg "a quadratic equation has repeated roots" \equiv " $b^{2}=4 a c$ ")

Device 3: Show that $A \Rightarrow C$ and $C \Rightarrow A$

Device 4: Show that " $B \Rightarrow D \& E$ are true" and that (eg) " B not true \Rightarrow at least one of $D \& E$ is not true"

Device 5: Break down B not true into different cases (eg for distinct roots: (i) one root equal to 0 (ii) both negative (iii) both positive) (iv) one negative \& one positive)

