## Probability Methods

## Approaches

(1) 'One step at a time'
eg $P$ (drawing a red ball, followed by a blue ball)
$=P($ drawing a red ball on the 1 st go $)$
$\times P($ drawing a blue ball on the 2 nd go |a red ball was drawn 1 st$)$
(2) Break down into cases:
$P(E)=P\left(A_{1}\right) P\left(E \mid A_{1}\right)+P\left(A_{2}\right) P\left(E \mid A_{2}\right)$
(3) Conditional probability: $P(E \mid A)=\frac{P(A \& E)}{P(A)}$
[often $P(A \& E)=P(E)$; eg if A is the event of rolling an even number on a die, and $E$ is the event of rolling a 2]
(4) 'Basic Definition': $P(E)=\frac{\text { number of outcomes where } E \text { occurs }}{\text { number of possible outcomes }}$ provided that the outcomes are equally likely

Notes
(i) The outcomes will be equally likely when $\binom{n}{r}$ is employed.
(ii) Given the choice, it will normally be easier to count outcomes on the basis that order isn't important.
(iii) Special case: $P(E \mid A)=\frac{\text { number of outcomes where } A \text { \& } E \text { occur }}{\text { number of outcomes where } A \text { occurs }}$
(5) Recurrence relation

A and B take it in turns to shoot arrows at a target, with A starting first. The probability that A hits the target is $a$ and the probability that B hits the target is $b$. The winner is the person who hits the target first. Find the probability that A wins.

## Solution

Let $\alpha$ be the probability that A wins.
Then $\alpha=\mathrm{P}(\mathrm{A}$ wins on 1 st attempt $)+\mathrm{P}($ wins after 1 st attempt $)$
[Case by Case approach]
$=a+(1-a)(1-b) \alpha$, [Recurrence relation]
so that $\alpha(1-(1-a)(1-b))=a$,
and $\alpha=\frac{a}{1-(1-a)(1-b)}=\frac{a}{a+b-a b}$

3 letters are selected from a bag containing the letters AAABBBCCC (with letters not being replaced). Find the probability that 3 different letters are chosen.

3 letters are selected from a bag containing the letters AAABBBCCC (with letters not being replaced). Find the probability that 3 different letters are chosen.

## Solution

Approach 1: 'One step at a time'
$P(3$ different letters are chosen)
$=\mathrm{P}$ (any letter is chosen initially)
$\times \mathrm{P}$ (a different letter is then chosen)
$\times \mathrm{P}($ a letter different from the 1 st 2 is then chosen $)$
$=1 \times \frac{6}{8} \times \frac{3}{7}=\frac{9}{28}$

Approach 2: Consider 1 way \& count number of ways
$\mathrm{P}(\mathrm{ABC}$ are chosen - in that order $)=\frac{3}{9} \times \frac{3}{8} \times \frac{3}{7}=\frac{3}{7 \times 8}$
As there are 3 ! ways of ordering ABC,
$\mathrm{P}(3$ different letters are chosen $)=\frac{3}{7 \times 8} \times 3!=\frac{9}{28}$

Approach 3a: 'Basic definition’
P(3 different letters are chosen)
$=\frac{\text { no. of ways of obtaining the letters ABC (where order doesn't matter) }}{\text { no. of ways of chosing } 3 \text { letters out of } 9 \text { (where order doesn't matter) }}$
$=\frac{\binom{3}{1} \times\binom{ 3}{1} \times\binom{ 3}{1}}{\binom{9}{3}}=\frac{27}{\left(\frac{9(8)(7)}{3!}\right)}=\frac{9}{28}$

## Approach 3b:

P (3 different letters are chosen)
$=\underline{\text { no. of ordered selections involving the letters ABC }}$
total no. of ordered selections
$=\frac{\text { no. of ways of obtaining ABC (in that order }) \times 3!}{9 \times 8 \times 7}=\frac{3 \times 3 \times 3 \times 3!}{9 \times 8 \times 7}=\frac{9}{28}$

## Devices

(i) Symmetry

When throwing a fair die repeatedly:
$P($ At least one 5 arises before the 1st 6)
$P$ (At least one 5 arises before the 1 st 6 )
$=P($ a 5 occurs before a 6$)=\frac{1}{2}$
(ii) $P($ at least 1$)=1-P($ none $)$

Similarly: initially include non-permissible cases, and then deduct them
(iii) eg $P(3 A s \& 2 B s)$
$=P(A A A B B) \times$ number of arrangements of 3 As \& $2 B s$

