STEP - Matrices

Consider the transformation represented by $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$

(i) What is the significance of $\binom{a}{b}$?

(ii) What happens when (a) |M| = 1? (b) |M| = 0?

A transformation is represented by $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, where $c \neq 0$

(i) Show that the condition for the existence of a line of invariant points is that tr(M) = |M| + 1

[A line of invariant points is one for which all points on the line transform to themselves. The trace of M, tr(M) = a + d.]

Solution

Suppose that $\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix}$ Then ap + cq = p & bp + dq = q, so that (a - 1)p + cq = 0 & bp + (d - 1)q = 0In order for there to be a solution other than p = q = 0, $\begin{vmatrix} a - 1 & c \\ b & d - 1 \end{vmatrix} = 0$, so that (a - 1)(d - 1) - bc = 0, and ad - bc - (a + d) + 1 = 0; giving tr(M) = a + d = |M| + 1This argument is reversible, and so there will be a line of invariant

points when tr(M) = |M| + 1

(ii) Show that the condition for the existence of invariant lines is that $[tr(M)]^2 \ge 4|M|$

[An invariant line is one for which all points on the line transform to a point on that line (ie transform to either themselves or another point on the line).] [(ii) Show that the condition for the existence of invariant lines is that $[tr(M)]^2 \ge 4|M|$]

Solution

(i) Suppose that there is an invariant line y = mx + k. Then $\binom{a}{b} \binom{x}{mx + k} = \binom{ax + cmx + ck}{bx + dmx + dk}$ and bx + dmx + dk = m(ax + cmx + ck) + kThis must apply for all x, so: equating coefficients of $x: b + dm = ma + cm^2$, so that $cm^2 + m(a - d) - b = 0$ (1) And equating constant terms gives dk = mck + k, so that k(d - mc - 1) = 0 (2) Then, in order for there to be an m that satisfies (1), the discriminant of (1) must be non-negative (and vice-versa) [noting that $c \neq 0$, so that (1) is a quadratic] ie $(a - d)^2 + 4cb \ge 0$ $\Leftrightarrow (a + d)^2 - 4ad + 4cb \ge 0$

Note: It can also be shown that there will be a family of invariant lines if and only if tr(M) = |M| + 1

(iii) What is special about c = 0?

[(iii) What is special about c = 0?]

For
$$M = \begin{pmatrix} a & 0 \\ b & d \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ d \end{pmatrix}$ is the image of $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

The *y*-axis will be an invariant line, but its gradient is undefined.

Example: $\begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix}$

 $\Delta = 1$

As $tr = \Delta + 1$, there is a line of invariant points (through the Origin), and a family of invariant lines.

It will in fact be a shear (with the line of invariant points being part of the family of invariant lines).

fmng.uk

 $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

 $\Delta = 0 \Rightarrow$ images of all points lie on the same line:

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \Rightarrow \frac{p}{2} + \frac{q}{2} = u \& \frac{p}{2} + \frac{q}{2} = v ; v = u$$

so image line is y = x

To find the points that map to (*u*, *u*):

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ u \end{pmatrix} \Rightarrow \frac{x}{2} + \frac{y}{2} = u; y = 2u - x$$

Note that y = 2u - x passes through (u, u).

So y = 2u - x is a family of invariant lines.

Also, as $tr = \Delta + 1$, there is a line of invariant points (through the Origin).

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix} \Rightarrow \frac{p}{2} + \frac{q}{2} = p; q = p;$$

ie line of invariant points is y = x

[Note: The line of invariant points isn't part of the family of invariant lines.]

fmng.uk

$$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

Idea for (iii)
$$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
: consider image(s) of particular point(s)

fmng.uk

$$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$
$$\Delta = -1$$

As $tr = \Delta + 1$, there is a line of invariant points (through the Origin), and a family of invariant lines.

This suggests a reflection in y = mx.

If y = mx is a line of invariant points, then

$$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ m \end{pmatrix} = \begin{pmatrix} 1 \\ m \end{pmatrix},$$

so that $-\frac{1}{2} + \frac{\sqrt{3}}{2}m = 1 \& \frac{\sqrt{3}}{2} + \frac{m}{2} = m$; ie $m = \sqrt{3}$

Also, consider the image of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, which is $\begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$.

We would expect $\left| \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} \right| = \left| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|$, which it does.

Also, the angle 2θ between $\begin{pmatrix} 1\\ 0 \end{pmatrix} \& \begin{pmatrix} -\frac{1}{2}\\ \frac{\sqrt{3}}{2} \end{pmatrix}$ is given by

$$(1)\left(-\frac{1}{2}\right) + (0)\left(\frac{\sqrt{3}}{2}\right) = \left|\binom{1}{0}\right| \left|\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right| \cos 2\theta ,$$

so that $cos2\theta = -\frac{1}{2}$, and hence $\theta = \frac{\pi}{3}$, so that a reflection in the line y = mx would imply that $m = tan\theta = \sqrt{3}$

Summary

Condition for existence of invariant lines: $[tr(M)]^2 \ge 4|M|$

Condition for existence of line of invariant points (and family of

invariant lines): tr(M) = |M| + 1

When invariant lines exist:

If a line of invariant points doesn't	One or two invariant lines
exist:	through the Origin.
If a line of invariant points exists:	Family of invariant lines
	(including one through
	the Origin), and possibly
	a further invariant line
	through the Origin; one of
	the lines through the
	Origin will be a line of
	invariant points

Examples where line of invariant points exists:

(4	$\binom{9}{1}: M = 1: tr(M) = 2$	Shear (family of invariant
\ −1	-2^{1}	lines, including a line of
		invariant points)
		[There will be a shear
		whenever $ M = 1$
		& tr(M) = 2]
(4	$\binom{6}{1} \cdot M = 0 \cdot tr(M) = 1$	All points transform to a
<u>\</u> -2	-3^{1}	single line, which is a line
		of invariant points;
		further family of
		invariant lines [Note: the
		line of invariant points
		isn't part of the family
		here.]
$\left(-\frac{1}{2} \right)$	$\sqrt{3}$	Reflection in $y = x$ (line
2	M = -1: $tr(M) = 0$	of invariant points);
$\sqrt{\sqrt{3}}$	$\frac{1}{2}$	family of invariant lines
<u>\</u> 2	2 /	perpendicular to $y = x$

- (i) Write the simultaneous equations
- ax + cy = e & bx + dy = f in matrix form.
- (ii) Condition for there to be a unique solution?
- (iii) Condition for equations to be consistent?

[(i) Write the simultaneous equations ax + cy = e & bx + dy = f in matrix form.] $\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e \\ f \end{pmatrix}$

(ii) Condition for there to be a unique solution? $\begin{vmatrix} a & c \\ b & d \end{vmatrix} \neq 0$

(iii) Condition for equations to be consistent?

 $\begin{vmatrix} a & c \\ b & d \end{vmatrix} \neq 0 \text{ or } \begin{vmatrix} a & e \\ b & f \end{vmatrix} = 0 \text{ [or alternatively } \begin{vmatrix} e & c \\ f & d \end{vmatrix} = 0]$

Is there a solution to the following equations?

$$8x - 4z = 40$$
$$3x - 5y + z = 0$$
$$x - y = 2$$

[Is there a solution to the following equations?

$$8x - 4z = 40$$

$$3x - 5y + z = 0$$

$$x - y = 2$$

$$\begin{vmatrix} 8 & 0 & -4 \\ 3 & -5 & 1 \\ 1 & -1 & 0 \end{vmatrix} = 8(1) + (-4)(2) = 0, \text{ so no unique solution}$$
$$\begin{vmatrix} 40 & 0 & -4 \\ 0 & -5 & 1 \\ 2 & -1 & 0 \end{vmatrix} = 40(1) + (-4)(10) = 0;$$

so infinite number of solutions

[Using the 3rd eq'n to eliminate *x*,

8(2 + y) - 4z = 40 & 3(2 + y) - 5y + z = 0;ie 8y - 4z = 24 & -2y + z = -6]