STEP - Matrices

Consider the transformation represented by $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$
(i) What is the significance of $\binom{a}{b}$?
(ii) What happens when (a) $|M|=1$? (b) $|M|=0$?

A transformation is represented by $M=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, where $c \neq 0$
(i) Show that the condition for the existence of a line of invariant points is that $\operatorname{tr}(M)=|M|+1$
[A line of invariant points is one for which all points on the line transform to themselves. The trace of $\mathrm{M}, \operatorname{tr}(M)=a+d$.]

Solution

Suppose that $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{p}{q}=\binom{p}{q}$
Then $a p+c q=p \& b p+d q=q$,
so that $(a-1) p+c q=0 \& b p+(d-1) q=0$
In order for there to be a solution other than $p=q=0$,
$\left|\begin{array}{cc}a-1 & c \\ b & d-1\end{array}\right|=0$,
so that $(a-1)(d-1)-b c=0$,
and $a d-b c-(a+d)+1=0$;
giving $\operatorname{tr}(M)=\mathrm{a}+\mathrm{d}=|M|+1$
This argument is reversible, and so there will be a line of invariant points when $\operatorname{tr}(M)=|M|+1$
(ii) Show that the condition for the existence of invariant lines is that $[\operatorname{tr}(M)]^{2} \geq 4|M|$
[An invariant line is one for which all points on the line transform to a point on that line (ie transform to either themselves or another point on the line).]
[(ii) Show that the condition for the existence of invariant lines is that $\left.[\operatorname{tr}(M)]^{2} \geq 4|M|\right]$

Solution

(i) Suppose that there is an invariant line $y=m x+k$.

Then $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{m x+k}=\binom{a x+c m x+c k}{b x+d m x+d k}$
and $b x+d m x+d k=m(a x+c m x+c k)+k$
This must apply for all x, so:
equating coefficients of $x: b+d m=m a+c m^{2}$,
so that $\mathrm{cm}^{2}+m(a-d)-b=0$
And equating constant terms gives $d k=m c k+k$,
so that $k(d-m c-1)=0$
Then, in order for there to be an m that satisfies (1), the discriminant of (1) must be non-negative (and vice-versa) [noting that $c \neq 0$, so that (1) is a quadratic]
ie $(a-d)^{2}+4 c b \geq 0$
$\Leftrightarrow(a+d)^{2}-4 a d+4 c b \geq 0$
$\Leftrightarrow[\operatorname{tr}(M)]^{2} \geq 4|M|$, as required.

Note: It can also be shown that there will be a family of invariant lines if and only if $\operatorname{tr}(M)=|M|+1$
(iii) What is special about $c=0$?
[(iii) What is special about $c=0$?]
For $M=\left(\begin{array}{ll}a & 0 \\ b & d\end{array}\right),\binom{0}{d}$ is the image of $\binom{0}{1}$.
The y-axis will be an invariant line, but its gradient is undefined.

Example: $\left(\begin{array}{cc}4 & 1 \\ -9 & -2\end{array}\right)$
$\Delta=1$
As $\operatorname{tr}=\Delta+1$, there is a line of invariant points (through the Origin), and a family of invariant lines.

It will in fact be a shear (with the line of invariant points being part of the family of invariant lines).

$$
\left(\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

$\Delta=0 \Rightarrow$ images of all points lie on the same line:
$\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\binom{p}{q}=\binom{u}{v} \Rightarrow \frac{p}{2}+\frac{q}{2}=u \& \frac{p}{2}+\frac{q}{2}=v ; v=u$
so image line is $y=x$
To find the points that map to (u, u) :
$\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\binom{x}{y}=\binom{u}{u} \Rightarrow \frac{x}{2}+\frac{y}{2}=u ; y=2 u-x$
Note that $y=2 u-x$ passes through (u, u).
So $y=2 u-x$ is a family of invariant lines.
Also, as $\operatorname{tr}=\Delta+1$, there is a line of invariant points (through the Origin).
$\left(\begin{array}{ll}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)\binom{p}{q}=\binom{p}{q} \Rightarrow \frac{p}{2}+\frac{q}{2}=p ; q=p ;$
ie line of invariant points is $y=x$
[Note: The line of invariant points isn't part of the family of invariant lines.]

$$
\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

Idea for (iii) $\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$: consider image(s) of particular point(s)
$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$
$\Delta=-1$
As $\operatorname{tr}=\Delta+1$, there is a line of invariant points (through the Origin), and a family of invariant lines.

This suggests a reflection in $y=m x$.
If $y=m x$ is a line of invariant points, then
$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)\binom{1}{m}=\binom{1}{m}$,
so that $-\frac{1}{2}+\frac{\sqrt{3}}{2} m=1 \& \frac{\sqrt{3}}{2}+\frac{m}{2}=m$; ie $m=\sqrt{3}$
Also, consider the image of $\binom{1}{0}$, which is $\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}$.
We would expect $\left|\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right|=\left|\binom{1}{0}\right|$, which it does.
Also, the angle 2θ between $\binom{1}{0} \&\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}$ is given by
(1) $\left(-\frac{1}{2}\right)+(0)\left(\frac{\sqrt{3}}{2}\right)=\left|\binom{1}{0}\right|\left|\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right| \cos 2 \theta$,
so that $\cos 2 \theta=-\frac{1}{2}$, and hence $\theta=\frac{\pi}{3}$,
so that a reflection in the line $y=m x$ would imply that $m=\tan \theta=\sqrt{3}$

Summary

Condition for existence of invariant lines: $[\operatorname{tr}(M)]^{2} \geq 4|M|$
Condition for existence of line of invariant points (and family of invariant lines): $\operatorname{tr}(M)=|M|+1$

When invariant lines exist:

If a line of invariant points doesn't exist:	One or two invariant lines through the Origin.
If a line of invariant points exists:	Family of invariant lines (including one through the Origin), and possibly a further invariant line through the Origin; one of the lines through the Origin will be a line of invariant points

Examples where line of invariant points exists:

$\left(\begin{array}{cc}4 & 9 \\ -1 & -2\end{array}\right):\|M\|=1 ; \operatorname{tr}(M)=2$	Shear (family of invariant lines, including a line of invariant points) [There will be a shear whenever $\|M\|=1$ \& tr $(M)=2]$
$\left(\begin{array}{cc}4 & 6 \\ -2 & -3\end{array}\right):\|M\|=0 ; \operatorname{tr}(M)=1$	All points transform to a single line, which is a line of invariant points; further family of invariant lines [Note: the line of invariant points isn't part of the family here.]
$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right):\|M\|=-1 ; \operatorname{tr}(M)=0$	Reflection in $y=x$ (line of invariant points); family of invariant lines perpendicular to $y=x$

(i) Write the simultaneous equations
$a x+c y=e \& b x+d y=f$ in matrix form.
(ii) Condition for there to be a unique solution?
(iii) Condition for equations to be consistent?
[(i) Write the simultaneous equations
$a x+c y=e \& b x+d y=f$ in matrix form.]
$\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\binom{x}{y}=\binom{e}{f}$
(ii) Condition for there to be a unique solution?
$\left|\begin{array}{ll}a & c \\ b & d\end{array}\right| \neq 0$
(iii) Condition for equations to be consistent?
$\left|\begin{array}{ll}a & c \\ b & d\end{array}\right| \neq 0$ or $\left|\begin{array}{ll}a & e \\ b & f\end{array}\right|=0 \quad$ [or alternatively $\left|\begin{array}{ll}e & c \\ f & d\end{array}\right|=0$]

Is there a solution to the following equations?
$8 x-4 z=40$
$3 x-5 y+z=0$
$x-y=2$
[Is there a solution to the following equations?
$8 x-4 z=40$
$3 x-5 y+z=0$
$x-y=2$]
$\left|\begin{array}{ccc}8 & 0 & -4 \\ 3 & -5 & 1 \\ 1 & -1 & 0\end{array}\right|=8(1)+(-4)(2)=0$, so no unique solution
$\left|\begin{array}{ccc}40 & 0 & -4 \\ 0 & -5 & 1 \\ 2 & -1 & 0\end{array}\right|=40(1)+(-4)(10)=0 ;$
so infinite number of solutions
[Using the 3rd eq'n to eliminate x,
$8(2+y)-4 z=40 \& 3(2+y)-5 y+z=0 ;$
ie $8 y-4 z=24 \&-2 y+z=-6]$

