^{fmng.uk} STEP: Introductory Ideas & Exercises (20 pages; 4/7/25)

Simplify the following:

(i) $27^{-\frac{2}{3}}$ (ii) $\cos(-210^{\circ})$ (iii) $\log_4\left(\frac{1}{64}\right)$

(i)
$$27^{-\frac{2}{3}}$$
 (ii) $\cos(-210^{\circ})$ (iii) $\log_4\left(\frac{1}{64}\right)$

Solution

(i)
$$\frac{1}{27^{\frac{2}{3}}} = \frac{1}{\left(27^{\frac{1}{3}}\right)^2} = \frac{1}{3^2} = \frac{1}{9}$$

(ii) $\cos(-210^\circ) = \cos(210^\circ) = \cos(360^\circ - 210^\circ) = \cos(150^\circ) = -\frac{\sqrt{3}}{2}$

(iii)
$$log_4\left(\frac{1}{64}\right) = log_4(4^{-3}) = -3$$

(i) Does $\sqrt{4}$ equal 2 or ± 2 ? (ii) Simplify $\sqrt{x^2}$

(i) Does $\sqrt{4}$ equal 2 or ± 2 ? (ii) Simplify $\sqrt{x^2}$

Solution

(1)(i) $\sqrt{4} = 2$ (consider quadratic formula) (ii) $\sqrt{x^2} = |x|$

Comment on the following: $\frac{1}{x} > 4 \Rightarrow 1 > 4x$

Solution

$$\frac{1}{x} > 4 \Rightarrow 1 > 4x$$

We don't know whether x is positive or negative (undefined for x = 0).

Evaluate $\int \frac{1+x}{x-1} dx$

Solution

$$\int \frac{1+x}{x-1} \, dx = \int \frac{x-1}{x-1} \, dx + \int \frac{2}{x-1} \, dx \quad \text{etc}$$

Prove that $sin^2\theta + cos^2\theta = 1$

Prove that $sin^2\theta + cos^2\theta = 1$

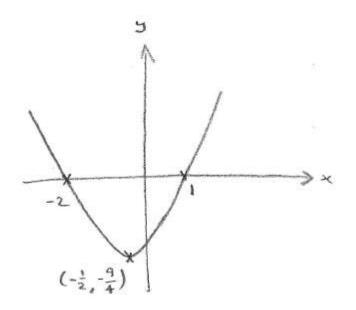
Solution

Apply Pythagoras to a right-angled triangle with sides $\cos\theta$, $\sin\theta \& 1$.

Find the turning point of the graph of y = (x - 1)(x + 2)

Find the turning point of the graph of y = (x - 1)(x + 2)

Solution



Due to the symmetry of the curve about the vertical line through the turning point, the *x*-coordinate of the turning point will be $\frac{1}{2}(-2+1) = -\frac{1}{2}$

Then the *y*-coordinate is $= \left(-\frac{1}{2} - 1\right) \left(-\frac{1}{2} + 2\right) = \left(\frac{-3}{2}\right) \left(\frac{3}{2}\right) = -\frac{9}{4}$

Alternatively, we can complete the square:

$$(x-1)(x+2) = x^2 + x - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{9}{4}$$

giving the turning point of $\left(-\frac{1}{2}, -\frac{9}{4}\right)$

Solve the equation $x - \sqrt{x} = 6$

Solve the equation $x - \sqrt{x} = 6$

Solution

Let $f(x) = x - \sqrt{x} - 6$ $f(x) = 0 \Rightarrow x - 6 = \sqrt{x}$ $\Rightarrow (x - 6)^2 = x$, but this may include spurious solutions [of $x - 6 = -\sqrt{x}$] $\Rightarrow x^2 - 13x + 36 = 0$ $\Rightarrow (x-9)(x-4) = 0$ $\Rightarrow x = 9 \text{ or } x = 4$ f(9) = 0 & f(4) = -4Thus the only solution is x = 9[Let $g(x) = x + \sqrt{x} - 6 = 0$ Then $g(x) = 0 \Rightarrow (x - 6)^2 = x$ as well $g(9) \neq 0$, and g(4) = 0Alternatively: Let $y = \sqrt{x}$, so that $x - \sqrt{x} - 6 = 0 \Rightarrow y^2 - y - 6 = 0$ $\Rightarrow (y+2)(y-3) = 0$ $\Rightarrow y = -2$ (reject as \sqrt{x} must be ≥ 0) or y = 3

Composite transformations required to obtain

 $y = \sin (2x + 60)$ from y = sinx?

Composite transformations required to obtain

$$y = \sin (2x + 60)$$
 from $y = sinx$?

Solution

Either (a) stretch by scale factor $\frac{1}{2}$ i the *x* direction, to give $y = \sin(2x)$, and then translate by $\binom{-30}{0}$, to give $y = \sin(2[x + 30]) = \sin(2x + 60)$ or (b) translate by $\binom{-60}{0}$, to give $y = \sin(x + 60)$, and then stretch by scale factor $\frac{1}{2}$ in the *x* direction, to give $y = \sin(2x + 60)$

(It is perhaps more awkward to produce a sketch by method (b).)

How many solutions are there to $x^3 - 6x^2 + 9x + 2 = 0$?

How many solutions are there to $x^3 - 6x^2 + 9x + 2 = 0$?

Solution

$$x^{3} - 6x^{2} + 9x + 2 = 0 \Leftrightarrow x(x^{2} - 6x + 9) = -2$$
$$\Leftrightarrow x(x - 3)^{2} = -2$$

So one solution, from graph of $y = x(x - 3)^2$

Find the smallest positive integer n such that

 $1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1} n \ge 100$

Find the smallest positive integer n such that

 $1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1} n \ge 100$

Solution

[Presence of $(-1)^{n+1}$ suggests considering even/odd *n*.]

With even *n*, the LHS becomes $1 - 2 + 3 - 4 + \dots - 2m$, writing n = 2m.

By grouping the terms as $(1-2) + (3-4) + \dots - 2m$, we see that this has a negative value.

So *n* must be odd, and the LHS becomes

 $1 - 2 + 3 - 4 + \dots + (2m + 1)$, writing n = 2m + 1

And the terms can be grouped to give

 $(1-2) + (3-4) + \cdots ([2m-1] - 2m) + (2m+1)$

= m(-1) + (2m + 1) = m + 1

So we want $m + 1 \ge 100$, and hence

 $n = 2m + 1 \ge 2(99) + 1 = 199$