fmng.uk

Find the turning point of the graph of y = (x - 1)(x + 2)

Due to the symmetry of the curve about the vertical line through the turning point, the *x*-coordinate of the turning point will be $\frac{1}{2}(-2+1) = -\frac{1}{2}$

Then the *y*-coordinate is $= \left(-\frac{1}{2} - 1\right) \left(-\frac{1}{2} + 2\right) = \left(\frac{-3}{2}\right) \left(\frac{3}{2}\right) = -\frac{9}{4}$

Alternatively, we can complete the square:

 $(x-1)(x+2) = x^2 + x - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} - 2 = \left(x + \frac{1}{2}\right)^2 - \frac{9}{4}$
giving the turning point of $\left(-\frac{1}{2}, -\frac{9}{4}\right)$

×

Point of Inflexion

Find the *x*-coordinate of the point of inflexion of the cubic $y = ax^3 + bx^2 + cx + d$

For
$$f(x) = ax^3 + bx^2 + cx + d$$
,
 $f'(x) = 3ax^2 + 2bx + c$
 $f''(x) = 6ax + 2b$
 $f'''(x) = 6a \neq 0$

So point of inflexion of the cubic occurs when f''(x) = 0

$$\Rightarrow x = -\frac{b}{3a}$$

Sketch (i) $y = 2x^3 + x$, and (ii) $y = 2x^3 - x$

(i)
$$y = 2x^3 + x = x(2x^2 + 1)$$
; so exactly one real root
 $\frac{dy}{dx} = 6x^2 + 1 > 0$
 $\frac{d^2y}{dx^2} = 12x$; so $\frac{d^2y}{dx^2} = 0$ when $x = 0$

(ii)
$$y = 2x^3 - x = x(2x^2 - 1) = x(\sqrt{2} \cdot x - 1)(\sqrt{2} \cdot x + 1);$$

so 3 real roots

Why do cubic functions have rotational symmetry (of order 2) about the point of inflexion?

[Why do cubic functions have rotational symmetry (of order 2) about the point of inflexion?]

Hint: WLOG, consider a cubic that passes through the Origin.

[Why do cubic functions have rotational symmetry (of order 2) about the point of inflexion?]

Consider a cubic of the form $y = ax^3 + bx^2 + cx + d$

WLOG translate it so that its point of inflexion is the Origin.

Then $y = f(x) = ax^3 + cx$ (as the PoI is at $x = -\frac{b}{3a}$) And f(-x) = -f(x)

Rotational symmetry \Rightarrow point of inflexion lies midway between any turning points. If f(x) = (x + 1)(x - 1)(x - 2), sketch the following: (i) y = f(x) (ii) y = |f(x)| (iii) y = f(|x|) (iv) |y| = f(x)

(ii) y = |f(x)|

(iii) y = f(|x|)

(iv) |y| = f(x)

Sketch y = ln (1 - x)

$$y = \ln (1 - x)$$
 is the reflection in $x = \frac{1}{2}$ of $y = lnx$

Sketch (i) $y = \sqrt{sinx}$ and (ii) $y = (sinx)^{\frac{1}{n}}$ for large positive integer *n* (for $0 \le x \le \pi$ in both cases).

(i) Note that, for 0 < y < 1, $\sqrt{y} > y$

So, for $y = \sqrt{sinx}$, the graph will hug the y - axis more than for y = sinx.

Also, if
$$f(x) = \sqrt{sinx}$$
, $f'(x) = \frac{1}{2}(sinx)^{-\frac{1}{2}}cosx$,

so that $f'(0) = \infty$ (strictly speaking, it is 'undefined');

ie the graph is vertical at x = 0 (and also $x = \pi$, by symmetry).

(ii) The effect is greater for larger *n*, and the graph tends to a rectangular shape.

fmng.uk

Sketch $y = \frac{x}{\sqrt{x^2 + p}}$, where p is a positive constant, for $x \ge 0$

Writing
$$f(x) = \frac{x}{\sqrt{x^2 + p}}$$
,
 $f(0) = 0$ and $f(x) \to 1^-$ as $x \to \infty$
 $f(x) = \frac{x}{\sqrt{x^2 + p}} \Rightarrow f'(x) = \frac{\sqrt{x^2 + p} - x \cdot \frac{1}{2} (x^2 + p)^{-\frac{1}{2}} \cdot 2x}{x^2 + p}$
 $= \frac{(x^2 + p) - x^2}{(x^2 + p)^{\frac{3}{2}}} = \frac{p}{(x^2 + p)^{\frac{3}{2}}} > 0$ for $x \ge 0$
And $f''(x) = p\left(-\frac{3}{2}\right) (x^2 + p)^{-\frac{5}{2}} (2x) < 0$ for $x > 0$

Checklist of curve sketching devices

(i) Intercepts with axes

(ii) Behaviour for large positive and negative *x* (and *y*)

(iii) Vertical and horizontal asymptotes

Sketch $y = \frac{2x+1}{x-2}$

(iv) Symmetries:

(a) about x = a (special case: x = 0; ie y-axis)

(b) rotational symmetry (odd function)

(c) symmetry about y = x

eg sinhx + sinhy = 1

Consider domain (line of symmetry may lie mid-way between limits of domain). [See STEP 2011, P2, Q1]

(v) Gradient of function

(vi) Greatest or least value of a function

- but stationary points only indicate local maxima and minima

- a greatest or least value may occur at a boundary of the domain

Examples where $f(x) \ge 0$: (i) $f(x) = [g(x)]^2 + [h(x)]^2$ (ii) For $x \ge a$: establish that $f(a) \ge 0$ and that $f'(x) \ge 0$ for $x \ge a$. (iii) $f(x) = x sinhx[g(x)]^2$ (as x & sinhx will always have the same sign - unless they are both zero)

(vii) Points of inflexion

(viii) Transformation of a simpler function

(ix) Breaking down the domain