Find the turning point of the graph of $y=(x-1)(x+2)$

Due to the symmetry of the curve about the vertical line through the turning point, the x-coordinate of the turning point will be $\frac{1}{2}(-2+1)=-\frac{1}{2}$
Then the y-coordinate is $=\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}+2\right)=\left(\frac{-3}{2}\right)\left(\frac{3}{2}\right)=-\frac{9}{4}$ Alternatively, we can complete the square: $(x-1)(x+2)=x^{2}+x-2=\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}-2=\left(x+\frac{1}{2}\right)^{2}-\frac{9}{4}$ giving the turning point of $\left(-\frac{1}{2},-\frac{9}{4}\right)$

Point of Inflexion

Turning point of the gradient

Necessary \& sufficient condition:
$\frac{d^{2} y}{d x^{2}}=0$ and $1^{\text {st }}$ non-zero derivative (excluding $\frac{d y}{d x}$) is of odd order

Find the x-coordinate of the point of inflexion of the cubic $y=a x^{3}+b x^{2}+c x+d$

Solution
For $f(x)=a x^{3}+b x^{2}+c x+d$,
$f^{\prime}(x)=3 a x^{2}+2 b x+c$
$f^{\prime \prime}(x)=6 a x+2 b$
$f^{\prime \prime \prime}(x)=6 a \neq 0$

So point of inflexion of the cubic occurs when $f^{\prime \prime}(x)=0$
$\Rightarrow x=-\frac{b}{3 a}$

Sketch (i) $y=2 x^{3}+x$, and (ii) $y=2 x^{3}-x$

Solution
(i) $y=2 x^{3}+x=x\left(2 x^{2}+1\right)$; so exactly one real root
$\frac{d y}{d x}=6 x^{2}+1>0$
$\frac{d^{2} y}{d x^{2}}=12 x$; so $\frac{d^{2} y}{d x^{2}}=0$ when $x=0$

(ii) $y=2 x^{3}-x=x\left(2 x^{2}-1\right)=x(\sqrt{2} \cdot x-1)(\sqrt{2} \cdot x+1)$;
so 3 real roots
$\frac{d y}{d x}=6 x^{2}-1$
$\frac{d^{2} y}{d x^{2}}=12 x$; so $\frac{d^{2} y}{d x^{2}}=0$ when $x=0$, and then $\frac{d y}{d x}=-1$
Also, $\frac{d y}{d x}=0$ when $x= \pm \frac{1}{\sqrt{6}}$

Why do cubic functions have rotational symmetry (of order 2) about the point of inflexion?
[Why do cubic functions have rotational symmetry (of order 2) about the point of inflexion?]

Hint: WLOG, consider a cubic that passes through the Origin.
[Why do cubic functions have rotational symmetry (of order 2) about the point of inflexion?]
Consider a cubic of the form $y=a x^{3}+b x^{2}+c x+d$ WLOG translate it so that its point of inflexion is the Origin.

Then $y=f(x)=a x^{3}+c x$ (as the PoI is at $x=-\frac{b}{3 a}$)
And $f(-x)=-f(x)$

Rotational symmetry \Rightarrow point of inflexion lies midway between any turning points.

If $f(x)=(x+1)(x-1)(x-2)$, sketch the following:
(i) $y=f(x)$ (ii) $y=|f(x)|$ (iii) $y=f(|x|)$ (iv) $|y|=f(x)$

Solution
(i) $y=f(x)$

(ii) $y=|f(x)|$

(iii) $y=f(|x|)$

(iv) $|y|=f(x)$

Sketch $y=\ln (1-x)$

Solution
$y=\ln (1-x)$ is the reflection in $x=\frac{1}{2}$ of $y=\ln x$

Sketch (i) $y=\sqrt{\sin x}$ and (ii) $y=(\sin x)^{\frac{1}{n}}$ for large positive integer n (for $0 \leq x \leq \pi$ in both cases).

Solution

(i) Note that, for $0<y<1, \sqrt{y}>y$

So, for $y=\sqrt{\sin x}$, the graph will hug the $y-$ axis more than for $y=\sin x$.
Also, if $f(x)=\sqrt{\sin x}, f^{\prime}(x)=\frac{1}{2}(\sin x)^{-\frac{1}{2}} \cos x$,
so that $f^{\prime}(0)=\infty$ (strictly speaking, it is 'undefined');
ie the graph is vertical at $x=0$ (and also $x=\pi$, by symmetry).
(ii) The effect is greater for larger n, and the graph tends to a rectangular shape.

Sketch $y=\frac{x}{\sqrt{x^{2}+p}}$, where p is a positive constant, for $x \geq 0$

Solution

Writing $f(x)=\frac{x}{\sqrt{x^{2}+p}}$,
$f(0)=0$ and $f(x) \rightarrow 1^{-}$as $x \rightarrow \infty$
$f(x)=\frac{x}{\sqrt{x^{2}+p}} \Rightarrow f^{\prime}(x)=\frac{\sqrt{x^{2}+p}-x \cdot \frac{1}{2}\left(x^{2}+p\right)^{-\frac{1}{2}} .2 x}{x^{2}+p}$
$=\frac{\left(x^{2}+p\right)-x^{2}}{\left(x^{2}+p\right)^{\frac{3}{2}}}=\frac{p}{\left(x^{2}+p\right)^{\frac{3}{2}}}>0$ for $x \geq 0$
And $f^{\prime \prime}(x)=p\left(-\frac{3}{2}\right)\left(x^{2}+p\right)^{-\frac{5}{2}}(2 x)<0$ for $x>0$

Checklist of curve sketching devices

(i) Intercepts with axes
(ii) Behaviour for large positive and negative x (and y)
(iii) Vertical and horizontal asymptotes

Sketch $y=\frac{2 x+1}{x-2}$

(iv) Symmetries:
(a) about $x=a$ (special case: $x=0$; ie y-axis)
(b) rotational symmetry (odd function)
(c) symmetry about $y=x$
eg $\sinh x+\sinh y=1$

Consider domain (line of symmetry may lie mid-way between limits of domain). [See STEP 2011, P2, Q1]
(v) Gradient of function
(vi) Greatest or least value of a function

- but stationary points only indicate local maxima and minima
- a greatest or least value may occur at a boundary of the domain

Examples where $f(x) \geq 0$:
(i) $f(x)=[g(x)]^{2}+[h(x)]^{2}$
(ii) For $x \geq a$: establish that $f(a) \geq 0$ and that $f^{\prime}(x) \geq 0$ for $x \geq a$.
(iii) $f(x)=x \sinh x[g(x)]^{2}$ (as $x \& \sinh x$ will always have the same sign - unless they are both zero)
(vii) Points of inflexion
(viii) Transformation of a simpler function
(ix) Breaking down the domain

