STEP - Complex Numbers

Quiz
(1) What is the imaginary part of $1+2 i$?
(2) Classify the following as imaginary or complex:
(a) $1+2 i$ (b) $2 i(c) 0$
(3) What is the geometric effect of:
(a) multiplication by i (b) multiplication by -1 (c) taking the conjugate

Answers

(1) 2
(2) (a) (non-real) complex (b) imaginary \& complex
(c) imaginary \& complex
(3) (a) rotation by $\frac{\pi}{2}$ anti-clockwise
(b) rotation by π (c) reflection in Real axis

Method for finding $\sqrt{24-10 i}$?

Solution

To find $\sqrt{24-10 i}$, let $24-10 i=(a+b i)^{2}$; then equate real and imaginary parts.

Find $(1+i)^{4}$

Solution

$1+i=\sqrt{2} e^{i \pi / 4}$
Hence $(1+i)^{4}=4 e^{i \pi}=4(\cos \pi+i \sin \pi)=-4$
$p-q=k i(r+s) \Rightarrow p^{*}-q^{*}=?$,
where k is real (and $p, q, r \& s$ are non-real complex numbers)
$\left[p-q=k i(r+s) \Rightarrow p^{*}-q^{*}=?\right.$,
where k is real (and $p, q, r \& s$ are non-real complex numbers)]
Solution
$([a+b i]+[c+d i])^{*}=a+c-(b+d) i$
$=(a+b i)^{*}+(c+d i)^{*}$

Also $[(a+b i)(c+d i)]^{*}=[a c-b d+i(b c+a d)]^{*}$
$=a c-b d-i(b c+a d)$
and $(a+b i)^{*}(c+d i)^{*}=(a-b i)(c-d i)$
$=a c-b d-i(b c+a d)$
[Or consider conjugate as reflection in Real axis.]

$$
\begin{aligned}
& p^{*}-q^{*}=(p-q)^{*}=[k i(r+s)]^{*} \\
& =k^{*} i^{*}(r+s)^{*}=k(-i)\left(r^{*}+s^{*}\right)
\end{aligned}
$$

The corners of a right-angled triangle are the points $P, Q \& R$ in the Argand diagram (in anti-clockwise order, with the right-angle being at Q), represented by the complex numbers $p, q \& r$.

Find an expression for $\frac{p-q}{r-q}$

Solution

$p-q=k i(r-q)$, where k is real; so that $\frac{p-q}{r-q}=k i$

Find the modulus and argument of $e^{\frac{7 \pi i}{10}}-e^{-\frac{9 \pi i}{10}}$
[Find the modulus and argument of $e^{\frac{7 \pi i}{10}}-e^{-\frac{9 \pi i}{10} \text {] }}$

Solution

Write $z=e^{\frac{7 \pi i}{10}}-e^{-\frac{9 \pi i}{10}}$ in the form $e^{a \pi i}\left(e^{b \pi i}-e^{-b \pi i}\right)$
So $a+b=\frac{7}{10} \& a-b=-\frac{9}{10}$
Then $a=-\frac{1}{10} \& b=\frac{8}{10}$
and $e^{\frac{7 \pi i}{10}}-e^{-\frac{9 \pi i}{10}}=e^{-\frac{\pi i}{10}}\left(e^{\frac{8 \pi i}{10}}-e^{-\frac{8 \pi i}{10}}\right)$
$=e^{-\frac{\pi i}{10}}\left(2 i \sin \left(\frac{4 \pi}{5}\right)\right)$
Then $|z|=\left|e^{-\frac{\pi i}{10}}\right|\left|2 i \sin \left(\frac{4 \pi}{5}\right)\right|=(1)\left(2 \sin \left(\frac{4 \pi}{5}\right)\right)$
$=2 \sin \left(\pi-\frac{4 \pi}{5}\right)=2 \sin \left(\frac{\pi}{5}\right)$
and $\arg (z)=\arg \left(e^{-\frac{\pi i}{10}}\right)+\arg \left(2 i \sin \left(\frac{4 \pi}{5}\right)\right)$
$=-\frac{\pi}{10}+\frac{\pi}{2}=\frac{4 \pi}{10}=\frac{2 \pi}{5}$

How are the complex numbers $\cos \theta+i \sin \theta$ and $\sin \theta+i \cos \theta$ related?

Solution

$\sin \theta+i \cos \theta=\cos \left(\frac{\pi}{2}-\theta\right)+i \sin \left(\frac{\pi}{2}-\theta\right)$
As both complex numbers have a modulus of $1, \sin \theta+i \cos \theta$ is the reflection of $\cos \theta+i \sin \theta$ in the line $\mathrm{Re}=\mathrm{Im}$

In

