STEP: Algebra – Further Exercises (6 pages; 21/12/24)

Express $\frac{1}{(1-x^2)^2}$ in terms of partial fractions

Express $\frac{1}{(1-x^2)^2}$ in terms of partial fractions

Solution

$$\frac{1}{(1-x^2)^2} = \frac{1}{(1-x)^2(1+x)^2} = \frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{C}{1+x} + \frac{D}{(1+x)^2}$$

so that $1 = A(1-x)(1+x)^2 + B(1+x)^2 + C(1+x)(1-x)^2 + D(1-x)^2$
Then $x = 1 \Rightarrow 1 = 4B \Rightarrow B = \frac{1}{4}$
 $x = -1 \Rightarrow 1 = 4D \Rightarrow D = \frac{1}{4}$
 $x = 0 \Rightarrow 1 = A + B + C + D \Rightarrow A + C = \frac{1}{2}$
Equating coefficients of $x^3 \Rightarrow 0 = -A + C$
Hence $A = C = \frac{1}{4}$ and $\frac{1}{(1-x^2)^2} = \frac{1}{4(1-x)} + \frac{1}{4(1-x)^2} + \frac{1}{4(1+x)} + \frac{1}{4(1+x)^2}$

Given that
$$\frac{bc-a}{1-c} = 7 \& \frac{b^2c-a^2}{1-c} = 51$$
,
show that $\frac{a+7}{a^2+51} = \frac{b+7}{b^2+51}$

Given that $\frac{bc-a}{1-c} = 7 \& \frac{b^2c-a^2}{1-c} = 51$,

show that $\frac{a+7}{a^2+51} = \frac{b+7}{b^2+51}$

Solution

$$\frac{bc-a}{1-c} = 7 \implies bc - a = 7 - 7c \implies c(b+7) = 7 + a$$
$$\implies c = \frac{a+7}{b+7}$$

and replacing *a*, *b* & 7 with a^2 , b^2 & 51 gives $c = \frac{a^2 + 51}{b^2 + 51}$

so that $\frac{a+7}{b+7} = \frac{a^2+51}{b^2+51}$ and hence $\frac{a+7}{a^2+51} = \frac{b+7}{b^2+51}$ (since $a^2 + 51$ & $b^2 + 51$ are both non-zero)

If
$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$
, $\phi = \frac{1}{\sqrt{1 - \left(\frac{u}{c}\right)^2}}$ and $w = \frac{u + v}{1 + \frac{uv}{c^2}}$,
show that $\left(1 + \frac{uv}{c^2}\right)\gamma\phi = \frac{1}{\sqrt{1 - \left(\frac{w}{c}\right)^2}}$

If
$$\gamma = \frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$
, $\phi = \frac{1}{\sqrt{1 - \left(\frac{u}{c}\right)^2}}$ and $w = \frac{u + v}{1 + \frac{uv}{c^2}}$,

show that $\left(1 + \frac{uv}{c^2}\right)\gamma\phi = \frac{1}{\sqrt{1 - \left(\frac{w}{c}\right)^2}}$

Solution

The required result is equivalent to

$$\left(1 + \frac{uv}{c^2}\right)^2 \left(1 - \left(\frac{w}{c}\right)^2\right) = \left(1 - \left(\frac{u}{c}\right)^2\right) \left(1 - \left(\frac{v}{c}\right)^2\right)$$

or $\left(1 + \frac{uv}{c^2}\right)^2 \left(1 - \left(\frac{w}{c}\right)^2\right) - \left(1 - \left(\frac{u}{c}\right)^2\right) \left(1 - \left(\frac{v}{c}\right)^2\right) = 0$
$$LHS = \left\{1 + \frac{2uv}{c^2} + \frac{(uv)^2}{c^4}\right\} - \frac{(u+v)^2}{c^2} - \left\{1 - \frac{u^2}{c^2} - \frac{v^2}{c^2} + \frac{(uv)^2}{c^4}\right\}$$

= 0, as required.

[This is a result from Special Relativity: if spaceship C is seen by spaceship B to be moving away from it at speed v, and spaceship B is seen by spaceship A to be moving away from it (in the same direction as previously) at speed u, then Newtonian Physics gives the speed of C relative to A as just u + v, but according to Special Relativity it is w.

 $\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^2}}$ is the Lorentz factor associated with changes in

measurements of time and length for an object moving at relative speed v.]