STEP 2024, Paper 3, Q8 Solution (4 pages; 30/5/25)

8

(i) Explain why the equation (y - x + 3)(y + x - 5) = 0 represents a pair of straight lines with gradients 1 and -1. Show further that the equation

$$y^2 - x^2 + py + qx + r = 0$$

represents a pair of straight lines with gradients 1 and -1 if and only if $p^2 - q^2 = 4r$.

In the remainder of this question, C_1 is the curve with equation $x = y^2 + 2sy + s(s+1)$ and C_2 is the curve with equation $y = x^2$.

(ii) Explain why the coordinates of any point which lies on both of the curves C_1 and C_2 also satisfy the equation

$$y^{2} + 2sy + s(s+1) - x + k(y - x^{2}) = 0$$

for any real number k.

Given that s is such that C_1 and C_2 intersect at four distinct points, show that choosing k = 1 gives an equation representing a pair of straight lines, with gradients 1 and -1, on which all four points of intersection lie.

- (iii) Show that if C_1 and C_2 intersect at four distinct points, then $s < -\frac{3}{4}$.
- (iv) Show that if $s < -\frac{3}{4}$, then C_1 and C_2 intersect at four distinct points.

(i) 1st Part

If (y - x + 3)(y + x - 5) = 0, then either

y - x + 3 = 0 or y + x - 5 = 0, and these represent straight lines with gradients 1 and -1 respectively.

2nd Part

$$y^{2} - x^{2} + py + qx + r = 0 \quad (1)$$

$$\Leftrightarrow (y - x)(y + x) + c_{2}(y - x) + c_{1}(y + x) + c_{1}c_{2} = 0$$

or $(y - x + c_{1})(y + x + c_{2}) = 0$, (2)
where $p = c_{1} + c_{2}$, $q = c_{1} - c_{2}$ and $r = c_{1}c_{2}$, (3)
so that $p^{2} - q^{2} = (p - q)(p + q) = 2c_{2}(2c_{1}) = 4r$ (4)

If (1) represents a pair of straight lines with gradients 1 and -1, then (1) can be written as (2), with conditions (3) holding; from which (4) follows.

If $p^2 - q^2 = 4r$, then we can write $c_1 = \frac{1}{2}(p+q)$ and

 $c_2 = \frac{1}{2}(p-q)$, so that (3) holds, and then (1) can be written as (2); ie (1) represents a pair of straight lines with gradients 1 and -1.

This establishes the required 'if and only if' result.

(ii) 1st Part

If the point (x, y) lies on both C_1 and C_2 , then $y^2 + 2sy + s(s + 1) - x + k(y - x^2)$ $= x - x + k(x^2 - x^2) = 0$ (for any real k)

2nd Part

With k = 1, the given equation becomes $y^{2} + 2sy + s(s + 1) - x + (y - x^{2}) = 0$ (*) or $y^{2} - x^{2} + py + qx + r = 0$, where p = 2s + 1, q = -1 and r = s(s + 1)And $p^{2} - q^{2} = (p - q)(p + q) = (2s + 2)(2s) = 4r$

From the 1st Part of (ii), the 4 points of intersection satisfy (*), and from the 2nd Part of (i), $p^2 - q^2 = 4r \Rightarrow$ (*) represents a pair of straight lines with gradients 1 and -1.

(iii) From previous parts, the equation

$$y^2 + 2sy + s(s + 1) - x + (y - x^2) = 0$$

can be written as $(y - x + c_1)(y + x + c_2) = 0$,
where $c_1 = \frac{1}{2}(p + q)$ and $c_2 = \frac{1}{2}(p - q)$,
and $p = 2s + 1$, $q = -1$
Also, $y = x^2$, and the equations of the two straight lines become
 $x^2 - x + s = 0$ and $x^2 + x + s + 1 = 0$

For there to be two distinct solutions for both of these quadratic equations, we require:

$$1 - 4s > 0$$
 and $1 - 4(s + 1) > 0$;
ie $s < \frac{1}{4}$ and $-3 > 4s$; $s < -\frac{3}{4}$
ie $s < -\frac{3}{4}$ QED

(iv) If $s < -\frac{3}{4}$ then the quadratic equations $x^2 - x + s = 0$ and $x^2 + x + s + 1 = 0$ each have two distinct solutions, so that the quartic $(x^2 - x + s)(x^2 + x + s + 1) = 0$ has 4 distinct solutions. Expanding out this quartic gives

$$x^{4} + x^{3}(1-1) + x^{2}(s+1+s-1) + x(-s-1+s) + s(s+1)$$

= 0, or $x^{4} + 2sx^{2} - x + s(s+1) = 0$

And this is the same quartic obtained by substituting $y = x^2$ (the equation of C_2) into $x = y^2 + 2sy + s(s + 1)$ (the equation of C_1); ie C_1 and C_2 intersect at 4 distinct points.