STEP 2023, Paper 3, Q7 Solution (4 pages; 30/6/25)

7 (i) Let f be a continuous function defined for $0 \le x \le 1$. Show that

$$\int_0^1 f(\sqrt{x}) \, dx = 2 \int_0^1 x f(x) \, dx \, .$$

(ii) Let g be a continuous function defined for $0 \le x \le 1$ such that

$$\int_0^1 (g(x))^2 dx = \int_0^1 g(\sqrt{x}) dx - \frac{1}{3}.$$

Show that $\int_0^1 (g(x) - x)^2 dx = 0$ and explain why g(x) = x for $0 \le x \le 1$.

(iii) Let h be a continuous function defined for $0 \le x \le 1$ with derivative h' such that

$$\int_0^1 (\mathbf{h}'(x))^2 \, \mathrm{d}x = 2\mathbf{h}(1) - 2 \int_0^1 \mathbf{h}(x) \, \mathrm{d}x - \frac{1}{3}.$$

Given that h(0) = 0, find h.

(iv) Let k be a continuous function defined for $0 \le x \le 1$ and a be a real number, such that

$$\int_0^1 e^{ax} (\mathbf{k}(x))^2 \, \mathrm{d}x = 2 \int_0^1 \mathbf{k}(x) \, \mathrm{d}x + \frac{e^{-a}}{a} - \frac{1}{a^2} - \frac{1}{4} \, .$$

Show that a must be equal to 2 and find k.

fmng.uk

(i) Writing
$$x = u^2$$
, where $u \ge 0$, $dx = 2u \, du$,
and $\int_0^1 f(\sqrt{x}) dx = \int_0^1 f(u) \cdot 2u \, du$ or $2 \int_0^1 x f(x) \, dx$

(ii) 1st Part $\int_0^1 (g(x) - x)^2 dx = \int_0^1 (g(x))^2 dx + \int_0^1 x^2 dx - 2 \int_0^1 x g(x) dx$ $= \left[\int_0^1 g(\sqrt{x}) dx - \frac{1}{3}\right] + \left[\frac{1}{3}x^2\right]_0^1 - \int_0^1 g(\sqrt{x}) dx, \text{ from (i)}$

$$= -\frac{1}{3} + \left(\frac{1}{3} - 0\right) = 0$$
, as required.

2nd Part

Suppose that $g(x) \neq x$ for some $x \in [0,1]$

As *g* is a continuous function, $g(x) \neq x$ for some interval of $x \in [0,1]$, so that $(g(x) - x)^2 > 0$ for some such interval. But then $\int_0^1 (g(x) - x)^2 dx > 0$, as $(g(x) - x)^2 \ge 0$ for all *x*; and this contradicts the fact that $\int_0^1 (g(x) - x)^2 dx = 0$ Thus g(x) = x for $x \in [0,1]$; ie for $0 \le x \le 1$

(iii) Let
$$g(x) = h'(x)$$

Then $\int_0^1 (g(x))^2 dx = \int_0^1 (h'(x))^2 dx$
 $= 2h(1) - 2 \int_0^1 h(x) dx - \frac{1}{3}$ (*)
And $\int_0^1 g(\sqrt{x}) dx = 2 \int_0^1 xg(x) dx$, from (i);

$$= 2[xh(x)]_{0}^{1} - 2\int_{0}^{1}h(x)dx , \text{ by Parts;}$$

$$= 2h(1) - 0 - 2\int_{0}^{1}h(x)dx ,$$
and so, from (*): $\int_{0}^{1}(g(x))^{2} dx = \int_{0}^{1}g(\sqrt{x}) dx - \frac{1}{3};$
then, from (ii), $\int_{0}^{1}(h'(x) - x)^{2} dx = 0$ [noting that we haven't relied on $g = h'$ being continuous]

Then it follows that h'(x) = x, except possibly for isolated values of x.

And so $h(x) = \frac{1}{2}x^2 + C$, and this applies to all $0 \le x \le 1$, in order for *h* to be continuous.

Then, as h(0) = 0, $h(x) = \frac{1}{2}x^2$

(iv) Consider
$$\int_0^1 (e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}})^2 dx$$

[Unfortunately, this starting point isn't that obvious. A natural approach is to try to use either (iii), or (perhaps more promisingly) (ii). However, this would only be feasible if *a* was already known.]

$$= \int_{0}^{1} e^{ax} (k(x))^{2} dx + \int_{0}^{1} e^{-ax} dx - 2 \int_{0}^{1} k(x) dx$$

$$= \frac{e^{-a}}{a} - \frac{1}{a^{2}} - \frac{1}{4} + \left[-\frac{1}{a} e^{-ax} \right]_{0}^{1}$$

$$= \frac{e^{-a}}{a} - \frac{1}{a^{2}} - \frac{1}{4} - \frac{1}{a} (e^{-a} - 1) = -\frac{1}{a^{2}} - \frac{1}{4} + \frac{1}{a}$$

$$= -\frac{(4 + a^{2} - 4a)}{4a^{2}}$$

$$= -\frac{(a - 2)^{2}}{4a^{2}}$$

fmng.uk

Now
$$\int_0^1 (e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}})^2 dx \ge 0$$
, whilst $= -\frac{(a-2)^2}{4a^2} \le 0$,
and so $\frac{(a-2)^2}{4a^2} = 0$, and therefore $a = 2$,
and $\int_0^1 (e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}})^2 dx = 0$,
so that $e^{\frac{ax}{2}}k(x) - e^{-\frac{ax}{2}} = 0$ for $0 \le x \le 1$, as in the 2nd Part of (ii);
and hence $k(x) = e^{-ax} = e^{-2x}$.