STEP 2023, P2, Q6 - Solution (5 pages; 10/6/25)

6 The sequence F_n , for n = 0, 1, 2, ..., is defined by $F_0 = 0$, $F_1 = 1$ and by $F_{n+2} = F_{n+1} + F_n$ for $n \ge 0$.

Prove by induction that, for all positive integers n,

$$\left(\begin{array}{cc}F_{n+1}&F_n\\F_n&F_{n-1}\end{array}\right)=\mathbf{Q}^n,$$

where the matrix **Q** is given by

$$\mathbf{Q} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

- (i) By considering the matrix Qⁿ, show that F_{n+1}F_{n-1} F_n² = (-1)ⁿ for all positive integers n.
- (ii) By considering the matrix Q^{m+n}, show that F_{m+n} = F_{m+1}F_n+F_mF_{n-1} for all positive integers m and n.
- (iii) Show that $\mathbf{Q}^2 = \mathbf{I} + \mathbf{Q}$.

In the following parts, you may use without proof the Binomial Theorem for matrices:

$$(\mathbf{I} + \mathbf{A})^n = \sum_{k=0}^n \left(\begin{array}{c} n \\ k \end{array} \right) \mathbf{A}^k.$$

(a) Show that, for all positive integers n,

$$F_{2n} = \sum_{k=0}^{n} \binom{n}{k} F_k.$$

(b) Show that, for all positive integers n,

$$F_{3n} = \sum_{k=0}^{n} \binom{n}{k} 2^{k} F_{k}$$

and also that

$$F_{3n} = \sum_{k=0}^n \binom{n}{k} F_{n+k}.$$

(c) Show that, for all positive integers n,

$$\sum_{k=0}^{n} \left(-1\right)^{n+k} \left(\begin{array}{c}n\\k\end{array}\right) F_{n+k} = 0\,.$$

Solution

1st Part

When n = 1,

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_2 & F_1 \\ F_1 & F_0 \end{pmatrix} = \begin{pmatrix} 1+0 & 1 \\ 1 & 0 \end{pmatrix} = Q = Q^n$$

Thus the result is true for n = 1.

Now assume that the result is true for n = k,

so that
$$\begin{pmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{pmatrix} = Q^k$$

Then $Q^{k+1} = Q \cdot Q^k = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{pmatrix}$
$$= \begin{pmatrix} F_{k+1} + F_k & F_k + F_{k-1} \\ F_{k+1} & F_k \end{pmatrix}$$
$$= \begin{pmatrix} F_{k+2} & F_{k+1} \\ F_{k+1} & F_k \end{pmatrix},$$

which is the result for n = k + 1

Thus, if the result is true for n = k, then it is true for n = k + 1. As the result is true for n = 1, it is therefore true for n = 2, 3, ...,and hence all positive integer n, by the principle of induction.

(i)
$$F_{n+1}F_{n-1} - F_n^2 = |Q^n| = |Q|^n = (-1)^n$$
, as required.

fmng.uk

(ii) As
$$Q^{m+n} = Q^m \cdot Q^n$$
,
 $\begin{pmatrix} F_{m+n+1} & F_{m+n} \\ F_{m+n} & F_{m+n-1} \end{pmatrix} = \begin{pmatrix} F_{m+1} & F_m \\ F_m & F_{m-1} \end{pmatrix} \cdot \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$

Then, taking the top right-hand element (on the LHS), $F_{m+n} = F_{m+1}F_n + F_mF_{n-1}$, as required (when m & n are positive integers).

(iii) 1st Part

$$Q^{2} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = I + Q,$$
as required.

•

(a) From the Binomial theorem for matrices,

$$(I+Q)^{n} = \sum_{k=0}^{n} {n \choose k} Q^{k}$$

And $(I+Q)^{n} = (Q^{2})^{n} = Q^{2n} = \begin{pmatrix} F_{2n+1} & F_{2n} \\ F_{2n} & F_{2n-1} \end{pmatrix}$
Taking the top right-hand element again, as $Q^{k} = \begin{pmatrix} F_{k+1} & F_{k} \\ F_{k} & F_{k-1} \end{pmatrix}$,
 $F_{2n} = \sum_{k=0}^{n} {n \choose k} F_{k}$, as required.

(b) 1st Part

Note that $\sum_{k=0}^{n} \binom{n}{k} 2^{k} Q^{k} = \sum_{k=0}^{n} \binom{n}{k} (2Q)^{k} = (I+2Q)^{n}$ The top right-hand element of the LHS is $\sum_{k=0}^{n} \binom{n}{k} 2^{k} F_{k}$, and we hope to show that $(I+2Q)^{n} = Q^{3n}$

fmng.uk

Now,
$$Q^3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$$
,
and $I + 2Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$,
so that $(I + 2Q)^n = Q^{3n}$,
the top right-hand element of which is F_{3n} ;

and so $F_{3n} = \sum_{k=0}^{n} {n \choose k} 2^k F_k$, as required.

2nd Part

Note that $\sum_{k=0}^{n} {n \choose k} Q^{n+k} = Q^n \sum_{k=0}^{n} {n \choose k} Q^k$ (*) The top right-hand element of the LHS is $\sum_{k=0}^{n} {n \choose k} F_{n+k}$, and $Q^n \sum_{k=0}^{n} {n \choose k} Q^k = Q^n (I+Q)^n$

Result to prove: Q(I + Q) = (I + Q)QLHS = $QI + Q^2 = Q + Q^2$ RHS = $IQ + Q^2 = Q + Q^2$ also

It follows from this that $Q^n(I + Q)^n = [Q(I + Q)]^n$, by reordering the Qs and (I + Q)s.

And
$$Q(I + Q) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix} = Q^3$$
,
Thus the RHS of (*) is $Q^n \sum_{k=0}^n \binom{n}{k} Q^k = Q^n (I + Q)^n$

fmng.uk

$$= [Q(I+Q)]^n = Q^{3n},$$

and so the top right-hand element of the RHS of (*) is F_{3n} , and hence $F_{3n} = \sum_{k=0}^{n} {n \choose k} F_{n+k}$, as required.

(c) [After a bit of experimenting]

Consider
$$[-Q(I-Q)]^n = (-Q)^n \sum_{k=0}^n \binom{n}{k} (-Q)^k$$

= $\sum_{k=0}^n (-1)^{n+k} \binom{n}{k} Q^{n+k}$,

the top right-hand element of which is $\sum_{k=0}^{n} (-1)^{n+k} {n \choose k} F_{n+k}$ And $-Q(I-Q) = -\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, so that $[-Q(I-Q)]^{n} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}^{n} = (-1)^{n} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{n}$ $= (-1)^{n} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,

the top right-hand element of which is zero;

and hence $\sum_{k=0}^{n} (-1)^{n+k} {n \choose k} F_{n+k} = 0$, as required.