STEP 2018, P2, Q4 - Solution (2 pages; 17/11/18)

(i) [It is likely that values of *n* or *p* beyond a certain point can be ruled out.]

If $n \ge 5$, then 5|n! + 5, and so n! + 5 cannot be prime.

$$n = 1 \Rightarrow 6 = p$$
; so no sol'n

$$n = 2 \Rightarrow 7 = p$$
; a sol'n

$$n = 3 \Rightarrow 11 = p$$
; a sol'n

$$n = 4 \Rightarrow 29 = p$$
; a sol'n

So sol'ns are (2,7), (3,11)& (4,29).

(ii) If $n \ge 7$, theorem $1 \Rightarrow m > 4n$

$$\Rightarrow LHS = 3! \, 5! \dots (2n-1)!$$
 and $RHS = (4n)! \, (4n+1) \dots$

But theorem $2 \Rightarrow$ there is a prime number, p between 2n & 4n But then p is a factor of the RHS, but not of the LHS.

Hence n < 7.

$$n = 1 \Rightarrow m = 1$$

$$n = 2 \Rightarrow m = 3$$

$$n = 3 \Rightarrow 6 \times 120 = m! \Rightarrow m = 6$$

$$n = 4 \Rightarrow m! = 6 \times 120 \times 7!$$

$$= 7! \times 8 \times (3 \times 30) = 8! \times 9 \times 10 = 10!$$

For n = 5, LHS = $3! \, 5! \, 7! \, 9! \Rightarrow m < 11$, as $11 \nmid LHS$, but 11 | m! when $m \ge 11$;

but
$$m = 10 \Rightarrow n = 4$$
, and $m < 10 \Rightarrow n < 4$

so
$$n \neq 5$$

For n = 6, LHS = $3!5!7!9!11! \Rightarrow m < 13$, as $13 \nmid LHS$, but $13 \mid m!$

when $m \ge 13$;

as before, $m \le 10 \Rightarrow n \le 4$;

m = 11 isn't possible, as LHS > 11!

m = 12 isn't possible, as LHS > 12!

so $n \neq 6$

Hence sol'ns are (1,1), (2,3), (3,6), (4,10).