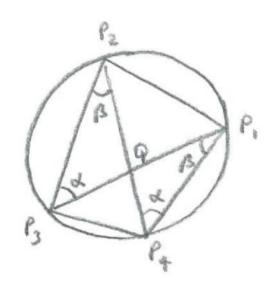
STEP 2014, P3, Q7 - Sol'n (3 pages; 11/3/21)

(i)



Referring to the diagram, the chord P_1P_2 subtends the angle α at both P_3 and P_4 (property of a circle). Similarly, the chord P_3P_4 subtends the angle β at both P_1 and P_2 . Thus the triangles P_1QP_4 and P_2QP_3 are similar, and hence $\frac{P_1Q}{QP_4}=\frac{P_2Q}{QP_3}$, so that

 $(P_1Q)(QP_3) = (P_2Q)(QP_4)$, as required.

(ii) As Q lies on the line segment P_1P_3 , $\underline{q}=\lambda\underline{p}_1+(1-\lambda)\underline{p}_3$ for some $\lambda>0$.

Similarly,
$$\underline{q} = \mu \underline{p}_2 + (1 - \mu)\underline{p}_4$$

Hence
$$\lambda p_1 + (1 - \lambda)p_3 = \mu p_2 + (1 - \mu)p_4$$
,

so that
$$\lambda p_1 - \mu p_2 + (1 - \lambda) p_3 - (1 - \mu) p_4 = 0$$
 (**)

and $\lambda + (-\mu) + (1 - \lambda) + [-(1 - \mu)] = 0$, as required.

(iii) 1st part

[Assuming that the \underline{p}_i are the position vectors of the P_i defined at the start; ie they are not just any old vectors that satisfy (*).]

As the \underline{p}_i are not parallel, the ratios of the a_i are uniquely determined by (**).

So
$$a_1 = k\lambda$$
 and $a_3 = k(1 - \lambda)$, for some $k \neq 0$

Then
$$a_1 + a_3 = k[\lambda + (1 - \lambda)] = k \neq 0$$

2nd part

The line (segments) P_1P_3 and P_2P_4 intersect at Q.

And
$$\frac{a_1\underline{p}_1 + a_3\underline{p}_3}{a_1 + a_3} = \frac{k\lambda\underline{p}_1 + k(1-\lambda)\underline{p}_3}{k\lambda + k(1-\lambda)} = \lambda\underline{p}_1 + (1-\lambda)\underline{p}_3 = \underline{q},$$

which is the position vector of Q, as required.

3rd part

[Note that $(P_1P_3)^2 = (\underline{p}_1 - \underline{p}_3) \cdot (\underline{p}_1 - \underline{p}_3)$, and that the result from (i) is almost certainly to be used. The question is, whether to start from the result from (i), and try to obtain

 $a_1a_3(P_1P_3)^2=a_2a_4(P_2P_4)^2$, or the other way round. Trying the 1st approach:

$$(P_1Q)(QP_3) = (P_2Q)(QP_4) \Rightarrow (P_1Q)^2(QP_3)^2 = (P_2Q)^2(QP_4)^2$$

LHS =
$$(\underline{p}_1 - \underline{q}) \cdot (\underline{p}_1 - \underline{q}) (\underline{p}_3 - \underline{q}) \cdot (\underline{p}_3 - \underline{q})$$
 (***)

Now from the 2nd part of (iii),

$$\underline{p}_1 - \underline{q} = \underline{p}_1 - \frac{a_1 \underline{p}_1 + a_3 \underline{p}_3}{a_1 + a_3}$$

Writing
$$A = a_1 + a_3$$
, this equals $\frac{\underline{p_1}(A - a_1) - a_3\underline{p_3}}{A} = \frac{a_3}{A}(\underline{p_1} - \underline{p_3})$

Similarly,
$$\underline{p}_3 - \underline{q} = \frac{a_1}{A} (\underline{p}_3 - \underline{p}_1)$$
,

and hence (***) equals

$$\frac{a_3}{A} \left(\underline{p}_1 - \underline{p}_3 \right) \cdot \frac{a_3}{A} \left(\underline{p}_1 - \underline{p}_3 \right) \frac{a_1}{A} \left(\underline{p}_3 - \underline{p}_1 \right) \cdot \frac{a_1}{A} \left(\underline{p}_3 - \underline{p}_1 \right)
= \frac{a_3^2 a_1^2}{A^4} \left| p_1 - p_3 \right|^4$$

Similarly, RHS equals $\frac{a_4^2a_2^2}{B^4}\left|\underline{p}_2-\underline{p}_4\right|^4$, where $B=a_2+a_4=-(a_1+a_3)=-A$, and so, taking the square root of each side, $a_1a_3(P_1P_3)^2=a_2a_4(P_2P_4)^2$, as required.

[Trying the other way:

$$a_1a_3(P_1P_3)^2 = a_1a_3\left(\underline{p}_1 - \underline{p}_3\right).\left(\underline{p}_1 - \underline{p}_3\right),$$

but it isn't obvious how to introduce \underline{q}]