STEP 2007, Paper 2, Q4 – Solution (6 pages; 29/3/25)

4 Given that $\cos A$, $\cos B$ and β are non-zero, show that the equation

$$\alpha \sin(A - B) + \beta \cos(A + B) = \gamma \sin(A + B)$$

reduces to the form

$$(\tan A - m)(\tan B - n) = 0,$$

where *m* and *n* are independent of *A* and *B*, if and only if $\alpha^2 = \beta^2 + \gamma^2$. Determine all values of *x*, in the range $0 \le x < 2\pi$, for which:

- (i) $2\sin(x-\frac{1}{4}\pi)+\sqrt{3}\cos(x+\frac{1}{4}\pi)=\sin(x+\frac{1}{4}\pi);$
- (ii) $2\sin(x-\frac{1}{6}\pi)+\sqrt{3}\cos(x+\frac{1}{6}\pi)=\sin(x+\frac{1}{6}\pi);$

(iii)
$$2\sin(x+\frac{1}{3}\pi)+\sqrt{3}\cos(3x)=\sin(3x)$$
.

[The Examiner's Report makes no reference to the large amount of work needed to consider the cases where cosA = 0 or

cosB = 0. In the actual exam, it might be best to sacrifice any marks available for this.]

The equation can be written as

$$\alpha sinAcosB - \alpha cosAsinB + \beta cosAcosB - \beta sinAsinB$$

 $-\gamma sinAcosB - \gamma cosAsinB = 0$
dividing by $cosAcosB$ (as $cosA \& cosB$ are non-zero)
 $\Leftrightarrow \alpha tanA - \alpha tanB + \beta - \beta tanAtanB - \gamma tanA - \gamma tanB = 0$
 $\Leftrightarrow tanAtanB - \frac{(\alpha - \gamma)tanA}{\beta} + \frac{(\alpha + \gamma)tanB}{\beta} - 1 = 0$ (as $\beta \neq 0$)
which, with $m = \frac{-(\alpha + \gamma)}{\beta} \& n = \frac{\alpha - \gamma}{\beta}$
 $\Leftrightarrow (tanA - m)(tanB - n) = 0$ when $\alpha^2 - \gamma^2 = \beta^2$ (1)
ie when $\alpha^2 = \beta^2 + \gamma^2$

[The official solution shows that, for "if and only if" proofs, it may be sufficient to indicate that the line of reasoning is reversible (assuming that this is the case).]

(i) With $\alpha = 2, \beta = \sqrt{3} \& \gamma = 1, A = x \& B = \frac{\pi}{4}, \beta^2 + \gamma^2 = \alpha^2$, so that, unless cosx = 0,

$$2\sin\left(x - \frac{\pi}{4}\right) + \sqrt{3}\cos\left(x + \frac{\pi}{4}\right) = \sin\left(x + \frac{\pi}{4}\right)$$
$$\Leftrightarrow \left(\tan\left(x + \sqrt{3}\right)\left(\tan\left(\frac{\pi}{4}\right) - \frac{1}{\sqrt{3}}\right) = 0, \text{ from (1)},$$
$$\Leftrightarrow \tan x = -\sqrt{3}$$

$$\Leftrightarrow x = -\frac{\pi}{3} + \pi \text{ or } -\frac{\pi}{3} + 2\pi \text{ (given that } 0 \le x < 2\pi);$$

ie the required values of x are $\frac{2\pi}{3}$ & $\frac{5\pi}{3}$ (subject to the caveat concerning *cosx*)

[Note that the double-headed arrow is important, because the statement $tanx = -\sqrt{3} \Rightarrow x = -\frac{\pi}{3} + \pi \text{ or } -\frac{\pi}{3} + 2\pi$ only means "x belongs to the set $\{-\frac{\pi}{3} + \pi, -\frac{\pi}{3} + 2\pi\}$ "; ie it could (conceivably) be the case that x can never equal $-\frac{\pi}{3} + 2\pi$ (for example)] If cosx = 0, then $x = \frac{\pi}{2}$ or $\frac{3\pi}{2}$ (given that $0 \le x < 2\pi$). For $x = \frac{\pi}{2}$, $2 \sin\left(\frac{\pi}{2} - \frac{\pi}{4}\right) + \sqrt{3} \cos\left(\frac{\pi}{2} + \frac{\pi}{4}\right) - \sin\left(\frac{\pi}{2} + \frac{\pi}{4}\right)$ $= 2 \cdot \frac{1}{\sqrt{2}} + \sqrt{3} \left(-\frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}} \ne 0$ For $x = \frac{3\pi}{2}$,

$$2\sin\left(\frac{3\pi}{2} - \frac{\pi}{4}\right) + \sqrt{3}\cos\left(\frac{3\pi}{2} + \frac{\pi}{4}\right) - \sin\left(\frac{3\pi}{2} + \frac{\pi}{4}\right)$$
$$= 2\left(-\frac{1}{\sqrt{2}}\right) + \sqrt{3}\left(\frac{1}{\sqrt{2}}\right) - \frac{1}{\sqrt{2}} \neq 0;$$

and so we can exclude cases where cosx = 0; ie the required values are $x = \frac{2\pi}{3}$ and $\frac{5\pi}{3}$

(ii) With
$$\alpha = 2, \beta = \sqrt{3} \& \gamma = 1, A = x \& B = \frac{\pi}{6}, \beta^2 + \gamma^2 = \alpha^2$$
,

so that the equation $\Leftrightarrow (tanx + \sqrt{3}) \left(tan \left(\frac{\pi}{6} \right) - \frac{1}{\sqrt{3}} \right) = 0$,

unless cosx = 0 (when $x = \frac{\pi}{2}$ or $\frac{3\pi}{2}$)

As $tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, the original equation is true for all values of x, apart from $x = \frac{\pi}{2}$ or $\frac{3\pi}{2}$ possibly. For $x = \frac{\pi}{2}$, $2 \sin\left(\frac{\pi}{2} - \frac{\pi}{6}\right) + \sqrt{3} \cos\left(\frac{\pi}{2} + \frac{\pi}{6}\right) - \sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right)$ $= 2\left(\frac{\sqrt{3}}{2}\right) + \sqrt{3}\left(-\frac{1}{2}\right) - \frac{\sqrt{3}}{2} = 0$ For $x = \frac{3\pi}{2}$, $2 \sin\left(\frac{3\pi}{2} - \frac{\pi}{6}\right) + \sqrt{3} \cos\left(\frac{3\pi}{2} + \frac{\pi}{6}\right) - \sin\left(\frac{3\pi}{2} + \frac{\pi}{6}\right)$ $= 2\left(-\frac{\sqrt{3}}{2}\right) + \sqrt{3}\left(\frac{1}{2}\right) - \left(-\frac{\sqrt{3}}{2}\right) = 0$

Thus the original equation is true for all values of *x*.

(iii) [Forcing the LHS into the earlier form:]

Let
$$A = \frac{1}{2} \left(\left[x + \frac{\pi}{3} \right] + 3x \right) = 2x + \frac{\pi}{6}$$
,
so that $B = 3x - \left(2x + \frac{\pi}{6} \right) = x - \frac{\pi}{6}$
Then with $\alpha = 2, \beta = \sqrt{3} \& \gamma = 1$ again,
 $\left(\tan \left(2x + \frac{\pi}{6} \right) + \sqrt{3} \right) \left(\tan \left(x - \frac{\pi}{6} \right) - \frac{1}{\sqrt{3}} \right) = 0$ (2),
unless $\cos \left(2x + \frac{\pi}{6} \right) = 0$ or $\cos \left(x - \frac{\pi}{6} \right) = 0$ (considered later)
Then $0 \le x < 2\pi \Rightarrow \frac{\pi}{6} \le 2x + \frac{\pi}{6} < 4\pi + \frac{\pi}{6}$

and $-\frac{\pi}{6} \le x - \frac{\pi}{6} < 2\pi - \frac{\pi}{6}$ Then (2) $\Leftrightarrow 2x + \frac{\pi}{6} = -\frac{\pi}{3} + \pi$ or $-\frac{\pi}{3} + 2\pi$ or $-\frac{\pi}{3} + 3\pi$ or $-\frac{\pi}{3} + 4\pi$ or $x - \frac{\pi}{6} = \frac{\pi}{6}$ or $\frac{\pi}{6} + \pi$

ie the possible values for x are $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$, $\frac{\pi}{3}$ or $\frac{4\pi}{3}$

Considering the possibility that $\cos\left(2x + \frac{\pi}{6}\right) = 0$: Write $u = 2x + \frac{\pi}{6}$, so that $\frac{\pi}{6} \le u < 4\pi + \frac{\pi}{6}$, and $\cos u = 0 \Leftrightarrow u = \frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{\pi}{2} + 2\pi$, $\frac{3\pi}{2} + 2\pi$ (*) Then, as $x = \frac{1}{2}\left(u - \frac{\pi}{6}\right)$, (*) $\Leftrightarrow x = \frac{\pi}{6}$, $\frac{2\pi}{3}$, $\frac{7\pi}{6}$, $\frac{5\pi}{3}$ Considering $f(x) = 2\sin\left(x + \frac{\pi}{3}\right) + \sqrt{3}\cos(3x) - \sin(3x)$: $f\left(\frac{\pi}{6}\right) = 2 + 0 - 1 \ne 0$ $f\left(\frac{2\pi}{3}\right) = 0 + \sqrt{3} - 0 \ne 0$ $f\left(\frac{7\pi}{6}\right) = -2 + 0 + 1 \ne 0$ $f\left(\frac{5\pi}{2}\right) = 0 - \sqrt{3} - 0 \ne 0$

Considering the possibility that $\cos\left(x - \frac{\pi}{6}\right) = 0$: Write $u = x - \frac{\pi}{6}$, so that $-\frac{\pi}{6} \le u < 2\pi - \frac{\pi}{6}$,

and $cosu = 0 \Leftrightarrow u = \frac{\pi}{2}, \frac{3\pi}{2}$ (**) Then, as $x = u + \frac{\pi}{6}$, (**) $\Leftrightarrow x = \frac{2\pi}{3}$ or $\frac{5\pi}{3}$,

both of which have already been rejected.

So we can exclude the case where $\cos\left(2x + \frac{\pi}{6}\right) = 0$.