STEP 2003, Paper 2, Q8 - Solution (4 pages; 12/4/24)

1st Part

By Separation of Variables,
$\int \frac{1}{y} d y=-k \int \frac{t^{2}-3 t+2}{t+1} d t$,
so that $\ln |y|=-k \int \frac{(t+1)(t-4)+6}{t+1} d t$
$=-k \int t-4+\frac{6}{t+1} d t$
$=-k\left(\frac{1}{2} t^{2}-4 t+6 \ln |t+1|\right)-\ln C$
(without loss of generality, as $-\ln C$ could be any number)
Then $C y=\exp \left\{-k\left(\frac{1}{2} t^{2}-4 t+6 \ln |t+1|\right)\right\}$
When $t=0, y=A$, so that $C=\frac{1}{A}$,
and hence $y=A \exp \left\{-k\left(\frac{1}{2} t^{2}-4 t+6 \ln |t+1|\right)\right\}$
$=A(t+1)^{-6 k} \exp \left\{-k\left(\frac{1}{2} t^{2}-4 t\right)\right\}$
(It is assumed that $t \geq-1$, so that $(t+1)^{-6 k}$ is defined if $k>0$.)
[t is presumably intended to be time]

2nd Part

A stationary value occurs when $\frac{d y}{d t}=0$.
Assuming $k \neq 0$ (otherwise $\frac{d y}{d t}$ is always zero),
and noting that $y>0$ (from (i), as $A>0$),
$\frac{d y}{d t}=0$ when $t^{2}-3 t+2=0$, assuming that $t \neq-1$
(so that we are now requiring $t>-1$)
ie when $(t-2)(t-1)=0$,
so that $t=1$ or 2
The ratio of the two stationary values is
$\frac{(2+1)^{-6 k} \exp \left\{-k\left(\frac{1}{2} 2^{2}-4(2)\right)\right\}}{(1+1)^{-6 k} \exp \left\{-k\left(\frac{1}{2} 1^{2}-4(1)\right)\right\}}=\left(\frac{3}{2}\right)^{-6 k} \exp \left\{-k\left(-6-\frac{1}{2}+4\right)\right\}$
or, alternatively, taking the reciprocal:
$\left(\frac{3}{2}\right)^{6 k} \exp \left(-\frac{5}{2} k\right)$, as required.
(This is the ratio of the value at $t=1$ to the value at $t=2$.)

3rd Part

$y=A(t+1)^{-6 k} \exp \left\{-k\left(\frac{1}{2} t^{2}-4 t\right)\right\}$
When $k>0$, as $t \rightarrow \infty$, both $(t+1)^{-6 k}$ and $\exp \left\{-k\left(\frac{1}{2} t^{2}-4 t\right)\right\}$ tend to zero, and so $y \rightarrow 0$

When $k<0,(t+1)^{-6 k}$ and $\exp \left\{-k\left(\frac{1}{2} t^{2}-4 t\right)\right\}$ tend to ∞, and so $y \rightarrow \infty$

4th Part

[We could investigate the ratio $\left(\frac{3}{2}\right)^{6 k} \exp \left(-\frac{5}{2} k\right)=\left(\left(\frac{3}{2}\right)^{6} e^{-\frac{5}{2}}\right)^{k}$.
With a calculator, we can find that $\left(\frac{3}{2}\right)^{6} e^{-\frac{5}{2}}<1$ (it doesn't seem to be that easy to deduce this manually; to 3 sf, the value is 0.935), so
that when $k>0$, a minimum occurs at $t=1$, and a maximum at $t=2$, and the other way round when $k<0$. But there is in fact only one way to draw each of the graphs.]

For $k>0$:

For $k<0$:

(As a check, the gradient at $t=0$ can be seen to be negative for $k>0$, and positive for $k<0$ - from the original equation.)

