STEP 2003, Paper 2, Q6 - Solution (3 pages; 2/4/24)

1st Part

$g_{1}(x)=f(x)=|x-1|:$

$g_{2}(x)=\left|g_{1}(x)-1\right|$
This can be obtained from $g_{1}(x)$ by translating 1 down, and reflecting in the x-axis whenever $g_{1}(x)-1<0$

$g_{3}(x)=\left|g_{2}(x)-1\right|$
Again, this can be obtained from $g_{2}(x)$ by translating 1 down, and reflecting in the x-axis whenever $g_{2}(x)-1<0$ (or reflecting in $y=\frac{1}{2}$, as then the new function is $\left.1-g_{2}(x)\right)$.
[Because of the symmetry of $g_{2}(x), g_{3}(x)$ will also have symmetry about $x=1$]

Similarly for $g_{4}(x)$:

2nd Part

The graph of $\left|\sin \left(\frac{\pi}{2} x\right)\right|$ is shown in bold below, with $g_{4}(x)$:

From the graphs in the $1^{\text {st }}$ Part, the number of hoops in the interval $[0, n]$ is seen to be $\frac{n}{2}$.
[The 'show' in the question, and the general spirit of STEP
questions suggest that this should be enough. Otherwise we could try to develop a proof by induction.]

Therefore $\int_{0}^{n}\left|\sin \left(\frac{\pi}{2} x\right)\right|-g_{n}(x) d x$
$=\frac{n}{2} \cdot 2 \int_{0}^{1} \sin \left(\frac{\pi}{2} x\right)-x d x$
$=n\left[-\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)-\frac{1}{2} x^{2}\right]_{0}^{1}$
$=n\left[-\frac{1}{2}-\left(-\frac{2}{\pi}\right)\right]$
$=\frac{2 n}{\pi}-\frac{n}{2}$, as required

