STEP 2003, Paper 2, Q6 - Solution (3 pages; 2/4/24)

1st Part

 $g_2(x) = |g_1(x) - 1|$

This can be obtained from $g_1(x)$ by translating 1 down, and reflecting in the *x*-axis whenever $g_1(x) - 1 < 0$

$$g_3(x) = |g_2(x) - 1|$$

Again, this can be obtained from $g_2(x)$ by translating 1 down, and reflecting in the *x*-axis whenever $g_2(x) - 1 < 0$ (or reflecting in

$$y = \frac{1}{2}$$
, as then the new function is $1 - g_2(x)$).

[Because of the symmetry of $g_2(x)$, $g_3(x)$ will also have symmetry about x = 1]

Similarly for $g_4(x)$:

2nd Part

The graph of $\left|\sin\left(\frac{\pi}{2}x\right)\right|$ is shown in bold below, with $g_4(x)$:

From the graphs in the 1st Part, the number of hoops in the interval [0, n] is seen to be $\frac{n}{2}$.

[The 'show' in the question, and the general spirit of STEP questions suggest that this should be enough. Otherwise we could try to develop a proof by induction.]

Therefore
$$\int_0^n |\sin\left(\frac{\pi}{2}x\right)| - g_n(x) dx$$

 $= \frac{n}{2} \cdot 2 \int_0^1 \sin\left(\frac{\pi}{2}x\right) - x dx$
 $= n[-\frac{2}{\pi}\cos\left(\frac{\pi}{2}x\right) - \frac{1}{2}x^2]_0^1$
 $= n[-\frac{1}{2} - \left(-\frac{2}{\pi}\right)]$
 $= \frac{2n}{\pi} - \frac{n}{2}$, as required