STEP 2003, Paper 2, Q10 - Solution (5 pages; 7/4/24)

[3 types of method that could, in general, be used to create equations for this type of question are:
(a) Creating forces diagrams and applying N2L
(b) Energy method
(c) Geometrical constraint]
$1^{\text {st }}$ Part
[Here (at least in the $1^{\text {st }}$ part of the question), there are unknown forces which prevent the use of methods (a) \& (b) (in the case of (b), work will be done by some of the forces).]

Initial position:

Position at a general time:

Then $x^{2}+y^{2}=l^{2}$
Differentiating both sides then gives $2 x \dot{x}+2 y \dot{y}=0$
or $x \dot{x}+y \dot{y}=0$
[where $\dot{x} \equiv \frac{d x}{d t}$]
And differentiating again gives $\dot{x}^{2}+x \ddot{x}+\dot{y}^{2}+y \ddot{y}=0$
Now, the horizontal and vertical displacements of P are
$\frac{l}{2}-x$ (to the left) and $y-l \sin \left(\frac{\pi}{3}\right)$ (downwards) $\left({ }^{* *}\right)$
If a_{x} and a_{y} are the horizontal and vertical displacements of P (at a general time), then differentiating $\left({ }^{(* *)}\right.$ twice,
$a_{x}=-\ddot{x}$ and $a_{y}=\ddot{y}$
Initially the system is at rest, and so $\dot{x}=\dot{y}=0$;
and $a_{x}=a_{1} ; a_{y}=a_{2}$
Also, initially, $x=\frac{l}{2}$ and $y=\left(\frac{l}{2}\right) \tan \left(\frac{\pi}{3}\right)=\frac{l \sqrt{3}}{2}$

Then, from (${ }^{*}$) (initially),
$0+\left(\frac{l}{2}\right)\left(-a_{1}\right)+0+\left(\frac{l \sqrt{3}}{2}\right) a_{2}=0$,
so that $a_{1}=\sqrt{3} a_{2}$, as required.

$2^{\text {nd }}$ Part

The (horizontal) displacement of B (at a general time) is
$l-2 x$ (to the left).
Differentiating twice, the acceleration of B is
$-2 \ddot{x}=-2\left(-a_{x}\right)=2 a_{x}$, and initially this equals $2 a_{1}$

3rd Part

Force diagram for B (in the initial position):

Applying N2L:
Vert: $R=m g+T_{2} \cos \left(\frac{\pi}{6}\right)$
Horiz: $T_{2} \cos \left(\frac{\pi}{3}\right)-\frac{\sqrt{3}}{6} R=m\left(2 a_{1}\right)$
Eliminating R,
$T_{2} \cos \left(\frac{\pi}{3}\right)-\frac{\sqrt{3}}{6}\left(m g+T_{2} \cos \left(\frac{\pi}{6}\right)\right)=m\left(2 a_{1}\right)$
so that $T_{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{6} \cdot \frac{\sqrt{3}}{2}\right)=m\left(2 a_{1}+\frac{\sqrt{3}}{6} g\right)$,
and $T_{2}=\frac{m\left(2 a_{1}+\frac{\sqrt{3}}{6} g\right)}{\frac{1}{4}}=\frac{2 m}{3}\left(12 a_{1}+\sqrt{3} g\right)$

Then, for P (in the initial position):

Vert: $3 m g-T_{1} \cos \left(\frac{\pi}{6}\right)-T_{2} \cos \left(\frac{\pi}{6}\right)=(3 m) a_{2}$
Horiz: $T_{1} \cos \left(\frac{\pi}{3}\right)-T_{2} \cos \left(\frac{\pi}{3}\right)=(3 m) a_{1}$,
so that $T_{1}\left(\frac{\sqrt{3}}{2}\right)+T_{2}\left(\frac{\sqrt{3}}{2}\right)=3 m\left(g-a_{2}\right)$, or $T_{1}+T_{2}=\frac{6 m}{\sqrt{3}}\left(g-a_{2}\right)$ and $T_{1}\left(\frac{1}{2}\right)-T_{2}\left(\frac{1}{2}\right)=3 m a_{1}$, or $T_{1}-T_{2}=6 m a_{1}$
Then, eliminating $T_{1}: 2 T_{2}=\frac{6 m}{\sqrt{3}}\left(g-a_{2}-\sqrt{3} a_{1}\right)$,
so that $T_{2}=m \sqrt{3}\left(g-a_{2}-\sqrt{3} a_{1}\right)$
Equating (A) and (B) then gives:
$\frac{2 m}{3}\left(12 a_{1}+\sqrt{3} g\right)=m \sqrt{3}\left(g-a_{2}-\sqrt{3} a_{1}\right)$,
so that, as $a_{1}=\sqrt{3} a_{2}$,
$24\left(\sqrt{3} a_{2}\right)+2 \sqrt{3} g=3 \sqrt{3}\left(g-a_{2}-\sqrt{3}\left(\sqrt{3} a_{2}\right)\right)$
or $24 a_{2}+2 g=3\left(g-4 a_{2}\right)$,
giving $36 a_{2}=g$, and so $a_{2}=\frac{g}{36}$
And hence the magnitude of the initial acceleration is:
$\sqrt{{a_{1}}^{2}+{a_{2}}^{2}}=\sqrt{3{a_{2}}^{2}+a_{2}{ }^{2}}=2 a_{2}=\frac{g}{18}$, as required.

