STEP 2003, Paper 2, Q10 - Solution (5 pages; 7/4/24)

[3 types of method that could, in general, be used to create equations for this type of question are:

(a) Creating forces diagrams and applying N2L

- (b) Energy method
- (c) Geometrical constraint]

1st Part

[Here (at least in the 1st part of the question), there are unknown forces which prevent the use of methods (a) & (b) (in the case of (b), work will be done by some of the forces).]

Initial position:

Position at a general time:

Then
$$x^2 + y^2 = l^2$$

Differentiating both sides then gives $2x\dot{x} + 2y\dot{y} = 0$

or $x\dot{x} + y\dot{y} = 0$

[where
$$\dot{x} \equiv \frac{dx}{dt}$$
]

And differentiating again gives $\dot{x}^2 + x\ddot{x} + \dot{y}^2 + y\ddot{y} = 0$ (*)

Now, the horizontal and vertical displacements of P are

$$\frac{l}{2} - x$$
 (to the left) and $y - lsin(\frac{\pi}{3})$ (downwards) (**)

If a_x and a_y are the horizontal and vertical displacements of P (at a general time), then differentiating (**) twice,

$$a_x = -\ddot{x}$$
 and $a_y = \ddot{y}$

Initially the system is at rest, and so $\dot{x} = \dot{y} = 0$;

and $a_x = a_1$; $a_y = a_2$

Also, initially,
$$x = \frac{l}{2}$$
 and $y = (\frac{l}{2})tan(\frac{\pi}{3}) = \frac{l\sqrt{3}}{2}$

Then, from (*) (initially),

$$0 + (\frac{l}{2})(-a_1) + 0 + (\frac{l\sqrt{3}}{2})a_2 = 0,$$

so that $a_1 = \sqrt{3}a_2$, as required.

2nd Part

The (horizontal) displacement of B (at a general time) is

l - 2x (to the left).

Differentiating twice, the acceleration of B is

 $-2\ddot{x} = -2(-a_x) = 2a_x$, and initially this equals $2a_1$

3rd Part

Force diagram for B (in the initial position):

Applying N2L:

Vert:
$$R = mg + T_2 cos(\frac{\pi}{6})$$

Horiz: $T_2 cos(\frac{\pi}{3}) - \frac{\sqrt{3}}{6}R = m(2a_1)$
Eliminating R ,
 $T_2 cos(\frac{\pi}{3}) - \frac{\sqrt{3}}{6}(mg + T_2 cos(\frac{\pi}{6})) = m(2a_1)$
so that $T_2(\frac{1}{2} - \frac{\sqrt{3}}{6} \cdot \frac{\sqrt{3}}{2}) = m(2a_1 + \frac{\sqrt{3}}{6}g)$,
and $T_2 = \frac{m(2a_1 + \frac{\sqrt{3}}{6}g)}{\frac{1}{4}} = \frac{2m}{3}(12a_1 + \sqrt{3}g)$ (A)

Then, for *P* (in the initial position):

Vert: $3mg - T_1 \cos\left(\frac{\pi}{6}\right) - T_2 \cos\left(\frac{\pi}{6}\right) = (3m)a_2$ Horiz: $T_1 \cos\left(\frac{\pi}{3}\right) - T_2 \cos\left(\frac{\pi}{3}\right) = (3m)a_1$,

fmng.uk

so that $T_1\left(\frac{\sqrt{3}}{2}\right) + T_2\left(\frac{\sqrt{3}}{2}\right) = 3m(g - a_2)$, or $T_1 + T_2 = \frac{6m}{\sqrt{3}}(g - a_2)$ and $T_1\left(\frac{1}{2}\right) - T_2\left(\frac{1}{2}\right) = 3ma_1$, or $T_1 - T_2 = 6ma_1$ Then, eliminating T_1 : $2T_2 = \frac{6m}{\sqrt{3}}(g - a_2 - \sqrt{3}a_1)$, so that $T_2 = m\sqrt{3}(g - a_2 - \sqrt{3}a_1)$ (B) Equating (A) and (B) then gives: $\frac{2m}{3}(12a_1 + \sqrt{3}g) = m\sqrt{3}(g - a_2 - \sqrt{3}a_1)$, so that, as $a_1 = \sqrt{3}a_2$, $24(\sqrt{3}a_2) + 2\sqrt{3}g = 3\sqrt{3}(g - a_2 - \sqrt{3}(\sqrt{3}a_2))$ or $24a_2 + 2g = 3(g - 4a_2)$, giving $36a_2 = g$, and so $a_2 = \frac{g}{36}$ And hence the magnitude of the initial acceleration is:

$$\sqrt{a_1^2 + a_2^2} = \sqrt{3a_2^2 + a_2^2} = 2a_2 = \frac{g}{18}$$
, as required.