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Motion of a particle in a rotating frame of reference 
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(A) Frames of reference  

(A/1) This note concerns the motion of a particle moving with  

respect to a frame of reference (or ‘frame’, for short) 𝑂𝑥𝑦𝑧 that is  

itself rotating relative to a fixed frame 𝑂𝑋𝑌𝑍. Both frames of  

reference have mutually perpendicular axes, and share the same  

Origin. Let 𝑖 , 𝑗 and 𝑘 be unit vectors in the rotating frame, in the  

𝑥, 𝑦 & 𝑧 directions, and 𝐼 , 𝐽 and 𝐾 unit vectors in the fixed  

frame, in the 𝑋, 𝑌 & 𝑍 directions. 

 

(A/2) The fixed frame is assumed to be inertial – where an  

inertial frame can be defined to be a frame in which Newton’s 1st  

Law holds. Newton’s 2nd Law then holds in any inertial frame.  

The main aim is to derive an equation of motion for  

the particle. Newton’s 2nd law is only valid in an inertial (and  

therefore fixed) frame, and so the equation of motion is initially  

established for the fixed frame. By invoking ‘apparent’ (or  

‘fictitious’) forces, it is then possible to come up with an equation  

that applies in the rotating frame. The most familiar example is of  

the rotating Earth, where centrifugal and Coriolis forces appear in  

the equation of motion, from the point of view of an observer on  

the Earth. 
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(A/3) There are two situations that can be considered: 

Planar case: This is the considerably simplified situation  

where the particle is constrained to move in a plane. The 𝑧 axis of  

the rotating frame is the same as the 𝑍 axis of the fixed frame, and  

the rotating frame rotates about the 𝑧 axis. The angular velocity of  

the rotating frame will therefore be of the form 𝜔(𝑡) = 𝜔(𝑡)𝑘. 

As indicated by the notation, 𝜔(𝑡) may vary with time, but it may  

be constant. 

General case: Now the particle can move in 3 dimensions, and  

the axis of rotation of the rotating frame of reference can be in  

any direction, and can vary with time. The only constraint is that  

the fixed and rotating frames share an Origin. 

The angular velocity of the rotating frame will now be of the form  

𝜔(𝑡) = 𝜔1(𝑡)𝑖 + 𝜔2(𝑡)𝑗 + 𝜔3(𝑡)𝑘 . It may seem odd that 𝜔(𝑡) is  

expressed in terms of unit vectors in the rotating frame, when the  

idea of the angular velocity is to represent the rotation relative to  

the fixed frame. This point is discussed in (A/4). 

It can help to consider a rigid body fixed in the rotating frame. In  

the case of a cuboid, the 𝑥 , 𝑦 and 𝑧 axes could be in the directions  

of 3 mutually perpendicular edges meeting at a corner of the  

cuboid. The cuboid would, at any moment, have an overall  

rotation made up of rotations about these 3 edges. 
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(A/4) From the point of view of an observer in the fixed frame, 

𝑖(𝑡), 𝑗(𝑡) and 𝑘(𝑡)  vary with time (as indicated by the notation),  

but they can (in principle) be expressed in terms of  𝐼 , 𝐽 and 𝐾.  

[See (C1/2) and (C2/1). In practice though, it may not be feasible  

to do this – especially for non-planar cases.] 

This means that any vector (including the position, velocity and  

acceleration of a particle, as well as the angular velocity of the  

rotating frame (or a rigid body fixed in the frame)) can (in  

principle) be expressed in terms of either the fixed axes, or the  

rotating axes. Thus the fact that quantities are expressed in terms  

of the rotating axes does not stop them from being quantities  

viewed in the fixed frame. (As mentioned, equations need to be  

set up in the inertial fixed frame, where Newton’s 2nd Law  

applies.) 

In particular, the angular velocity 𝜔(𝑡) represents how the  

rotating frame (or a rigid body in that frame) is rotating relative  

to the fixed frame, and yet 𝜔(𝑡) will invariably be given in terms  

of  𝑖 , 𝑗 and 𝑘.  

 

(B) Position & velocity vectors 

[Note: In the Planar case, the 3rd dimension won’t be needed.] 
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(B/1) Consider a particle, represented by a point 𝑃, moving  

relative to the rotating frame (as well as to the fixed frame). Its  

position vector can be represented in several ways: 

(i) With respect to an observer in the rotating frame, 

𝑟 𝑅(𝑡) = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘  (where 𝑖 , 𝑗 and 𝑘 appear to be  

fixed) 

 

(ii) With respect to an observer in the fixed frame, 

𝑟 𝐹(𝑡) = 𝑥(𝑡)𝑖(𝑡) + 𝑦(𝑡)𝑗(𝑡) + 𝑧(𝑡)𝑘(𝑡), 

and in principle 𝑖(𝑡), 𝑗(𝑡) and 𝑘(𝑡) can be written in terms of  𝐼 ,  𝐽 

and 𝐾 , to give: 

 

(iii) 𝑟 𝐹(𝑡) = 𝑋(𝑡)𝐼 + 𝑌(𝑡)𝐽 + 𝑍(𝑡)𝐾   

Note: Textbooks tend to just use the symbol 𝑟 for the position  

vector for all of the above forms. In each case, we are establishing  

the particle’s position in relation to the Origin, and the three  

forms are algebraically equivalent. (Were the rotating frame to  

have a different Origin from the fixed frame, then 𝑟 𝑅(𝑡) wouldn’t  

be equal to  𝑟 𝐹(𝑡).) 

 

(B/2) A velocity vector for the particle can be established, in the  

following forms: 
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(i) With respect to to an observer in the rotating frame, 

𝑟 𝑅(𝑡) = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘 ,   

and so  �̇� 𝑅(𝑡) = �̇�(𝑡)𝑖 + �̇�(𝑡)𝑗 + �̇�(𝑡)𝑘 ,  

as 𝑖 , 𝑗 and 𝑘 are fixed from the point of view of this observer. 

 

(ii) With respect to the fixed frame, 

𝑟 𝐹(𝑡) = 𝑥(𝑡)𝑖(𝑡) + 𝑦(𝑡)𝑗(𝑡) + 𝑧(𝑡)𝑘(𝑡)  

and, by the product rule for differentiation, 

 

 

 

 

(iii) Alternatively, where 𝑖(𝑡) and 𝑗(𝑡) can conveniently be  

expressed in terms of 𝐼 and 𝐽, we can obtain 

𝑟 𝐹(𝑡) = 𝑋(𝑡)𝐼 + 𝑌(𝑡)𝐽 + 𝑍(𝑡)𝐾 ,  

and �̇� 𝐹(𝑡) = �̇�(𝑡) 𝐼 + �̇�(𝑡)𝐽 + �̇�(𝑡)𝐾  (as 𝐼 , 𝐽 and 𝐾 are fixed). 

 

(C) Angular velocity of the rotating frame 

(C1) Planar case 

(C1/1) In this simplified situation, we assume that: 

(i) The particle’s motion takes place in the 𝑂𝑋𝑌 and 𝑂𝑥𝑦 planes,  

�̇� 𝐹(𝑡) = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + �̇�(𝑡)𝑘(𝑡)  

+ 𝑥(𝑡)
𝑑

𝑑𝑡
𝑖(𝑡) + 𝑦(𝑡)

𝑑

𝑑𝑡
𝑗(𝑡) + 𝑧(𝑡)

𝑑

𝑑𝑡
𝑘(t)       (1) 
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and (ii) The direction 𝑧 is fixed, and is the same as that of 𝑍. 

 

Referring to the diagram, 

 

(C1/2) At a given time 𝑡, it is possible to establish 𝜃 (as in the  

diagram above) from the history of the rotation of the frame (or  

the body). Once 𝜃 has been established, the unit vectors in the  

rotating frame, 𝑖(𝑡) & 𝑗(𝑡), can then (if necessary) be expressed in  

terms of the unit vectors in the fixed frame, 𝐼 & 𝐽 . 

 

(C1/3) Let 𝜔(𝑡) = �̇�(𝑡) be the rate at which 𝑂𝑥𝑦 rotates relative  

to 𝑂𝑋𝑌, about the axis 𝑍 = 𝑧 (where, in general, 𝜔(𝑡) can vary   

with time). 𝜔(𝑡) is referred to as the angular speed of the frame  

𝑖(𝑡) = 𝑐𝑜𝑠𝜃(𝑡)𝐼 + 𝑠𝑖𝑛𝜃(𝑡)𝐽  and 𝑗(𝑡) = −𝑠𝑖𝑛𝜃(𝑡)𝐼 + 𝑐𝑜𝑠𝜃(𝑡)𝐽    (2) 
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(or body), and the angular velocity in the planar case is 

𝜔(𝑡) = 𝜔(𝑡)𝑘.  

Note: If the body rotates at a constant rate 𝜔, then 𝜃 = 𝜔𝑡. 

 

(C1/4) From (2),  
𝑑

𝑑𝑡
𝑖(𝑡) = −𝑠𝑖𝑛𝜃(𝑡). �̇�(𝑡) 𝐼 + 𝑐𝑜𝑠𝜃(𝑡). �̇�(𝑡) 𝐽  

= �̇�(𝑡) 𝑗(𝑡)  or 𝜔(𝑡)𝑗(𝑡) 

and  
𝑑

𝑑𝑡
𝑗(𝑡) = −𝑐𝑜𝑠𝜃(𝑡). �̇�(𝑡)𝐼 − 𝑠𝑖𝑛𝜃(𝑡). �̇�(𝑡) 𝐽 

= −�̇�(𝑡) 𝑖(𝑡)  or  −𝜔(𝑡)𝑖(𝑡)   

 

 

 

 

 

(C2) General case 

 

 

𝑑

𝑑𝑡
𝑖(𝑡) = 𝜔(𝑡)𝑗(𝑡)  ;   

𝑑

𝑑𝑡
𝑗(𝑡) = −𝜔(𝑡)𝑖(𝑡)     (3) 
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(C2/1) Consider a rigid body that is fixed in the rotating frame –  

for example, a cuboid, as discussed earlier.  We will show that a  

vector 𝜔 𝐹(𝑡) can be found such that every point of the body is  

instantaneously rotating about an axis through the Origin in the  

direction of 𝜔 𝐹(𝑡), with this axis being momentarily at rest,  

relative to the fixed frame 𝑂𝑋𝑌𝑍.  

[Note: The notation 𝜔 𝐹(𝑡) has been used, rather than 𝜔(𝑡) (as in  

the Planar case), to indicate that the angular velocity is relative to  

the fixed frame. In the Planar case,  𝜔(𝑡) = 𝜔(𝑡)𝑘 is relative to the  

rotating frame (as indicated by the constant 𝑘), but the direction  

of 𝑘 is always 𝐾. Later on, we will write 𝜔 𝐹(𝑡) = 𝜔(𝑡)𝑘(𝑡), with 

𝑘(𝑡) = 𝐾 , to indicate that 𝜔 𝐹(𝑡) is also relative to the fixed  

frame.] 

In general, the direction of the axis can change with time. The  

orientation of the rotating 𝑖 , 𝑗 , 𝑘 frame relative to the fixed 𝐼 , 𝐽 , 𝐾  

frame at any specific moment will be determined by the history of  

the angular velocity vector 𝜔 𝐹(𝑡); ie knowledge of 𝜔 𝐹(𝑡) will (in  

principle) completely specify 𝑖(𝑡) , 𝑗(𝑡) , 𝑘(𝑡) in terms of 𝐼 , 𝐽 , 𝐾 , at  

any specific moment. 
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(C2/2)  First of all, we can establish that  
𝑑𝑖(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑖(t) , for 

a suitable 𝜔 𝐹(𝑡), and similarly for 
𝑑𝑗(𝑡)

𝑑𝑡
 & 

𝑑𝑘(𝑡)

𝑑𝑡
  

Proof 

First of all, 𝑖(𝑡). 𝑖(𝑡) = 1, and differentiating wrt time gives  

𝑑𝑖(𝑡)

𝑑𝑡
 . 𝑖(𝑡) + 𝑖 (𝑡).

𝑑𝑖(𝑡)

𝑑𝑡
= 0, so that  𝑖 (𝑡).

𝑑𝑖(𝑡)

𝑑𝑡
= 0 

This means that 
𝑑𝑖(𝑡)

𝑑𝑡
  is perpendicular to  𝑖(𝑡) , and can therefore  

be written as   𝛽1(𝑡)𝑗(𝑡) + 𝛾1(𝑡)𝑘(𝑡)   (*) 

Similarly, 
𝑑𝑗(𝑡)

𝑑𝑡
= 𝛾2(𝑡)𝑘(𝑡) + 𝛼2(𝑡)𝑖(𝑡)   

and  
𝑑𝑘(𝑡)

𝑑𝑡
= 𝛼3(𝑡)𝑖(𝑡) + 𝛽3(𝑡)𝑗(𝑡) 

Also, 𝑖(𝑡) . 𝑗(𝑡) = 0, and differentiating then gives 

𝑑𝑖(𝑡)

𝑑𝑡
 . 𝑗(𝑡) + 𝑖(𝑡).

𝑑𝑗(𝑡)

𝑑𝑡
= 0  

Hence, 

[𝛽1(𝑡)𝑗(𝑡) + 𝛾1(𝑡)𝑘(𝑡)] . 𝑗(𝑡) + 𝑖 (𝑡). [𝛾2(𝑡)𝑘(𝑡) + 𝛼2(𝑡)𝑖(𝑡)] = 0 ,   

so that  𝛽1(𝑡) + 𝛼2(𝑡) = 0, and we can write 

𝜔3(𝑡) = 𝛽1(𝑡) = −𝛼2(𝑡)   (ie defining 𝜔3(𝑡) in this way) 

Similarly, 𝜔1(𝑡) = 𝛾2(𝑡) = −𝛽3(𝑡)  and 𝜔2(𝑡) = 𝛼3(𝑡) = −𝛾1(𝑡), 

and so  
𝑑𝑖(𝑡)

𝑑𝑡
= 𝛽1(𝑡)𝑗(𝑡) + 𝛾1(𝑡)𝑘(𝑡)  (from (*)) 

= 𝜔3(𝑡)𝑗(𝑡) − 𝜔2(𝑡)𝑘(𝑡) , 

and similarly, 
𝑑𝑗(𝑡)

𝑑𝑡
= 𝜔1(𝑡)𝑘(𝑡) − 𝜔3(𝑡)𝑖(𝑡)   
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and  
𝑑𝑘(𝑡)

𝑑𝑡
= 𝜔2(𝑡)𝑖(𝑡) − 𝜔1(𝑡)𝑗(𝑡). 

Then if we define  𝜔 𝐹(𝑡) = 𝜔1(𝑡)𝑖(𝑡) + 𝜔2(𝑡)𝑗(𝑡) + 𝜔3(𝑡)𝑘(𝑡), 

it follows that  𝜔 𝐹(𝑡) × 𝑖(𝑡) = −𝜔2(𝑡)𝑘(𝑡) + 𝜔3(𝑡)𝑗(𝑡) =
𝑑𝑖(𝑡)

𝑑𝑡
 , 

and similarly  𝜔 𝐹(𝑡) × 𝑗(𝑡) =
𝑑𝑗(𝑡)

𝑑𝑡
   

and 𝜔 𝐹(𝑡) × 𝑘(𝑡) =
𝑑𝑘(𝑡)

𝑑𝑡
 , as required. 

 

 

 

 

 

 

(C2/3) We will now show that any point fixed in the rigid body  

is instantaneously performing circular motion about the  

the line through the Origin in the direction of 𝜔 𝐹(𝑡). 

 

Now, if 𝑟 𝐹(𝑡) = 𝑎𝑖(𝑡) + 𝑏𝑗(𝑡) + 𝑐𝑘(𝑡) is a point that is fixed in the  

body (so that 𝑎, 𝑏 & 𝑐 are constant), from the point of view of an  

observer in the fixed frame, then 

 
𝑑𝑟 𝐹(𝑡)

𝑑𝑡
= 𝑎

𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑏

𝑑𝑗(𝑡)

𝑑𝑡
+ 𝑐

𝑑𝑘(𝑡)

𝑑𝑡
  

= 𝑎𝜔 𝐹(𝑡) × 𝑖(𝑡) + 𝑏𝜔 𝐹(𝑡) × 𝑗(𝑡) + 𝑐𝜔 𝐹(𝑡) × 𝑘(t)  

Thus  
𝑑𝑖(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑖(𝑡), 

𝑑𝑗(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑗(𝑡) 

and  
𝑑𝑘(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑘(𝑡)        (4) 
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= 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)    (*) 

This shows that the direction of motion of the point (the direction  

of  
𝑑𝑟 𝐹(𝑡)

𝑑𝑡
 ) is perpendicular to both 𝑟 𝐹(𝑡) and  𝜔 𝐹(𝑡); ie  

perpendicular to the plane containing  𝑟 𝐹(𝑡)and  𝜔 𝐹(𝑡) (by the  

definition of the vector product), and the point is therefore  

performing circular motion about the line through 𝑂 with  

direction 𝜔 𝐹(𝑡). Also, (*) implies that 𝜔 𝐹(𝑡) is the angular  

velocity of the body. 

 

(D) 
𝒅𝒓

𝒅𝒕
=

𝜹𝒓

𝜹𝒕
+ 𝝎 × 𝒓  

(D1) Planar case 

(D1/1) From (3), 
𝑑

𝑑𝑡
𝑖(𝑡) = 𝜔(𝑡) 𝑗(𝑡)  and 

𝑑

𝑑𝑡
𝑗(𝑡) = −𝜔(𝑡) 𝑖(t) ,  

and so,  using the form (ii) referred to previously (but in 2D only): 

�̇� 𝐹(𝑡) = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + 𝑥(𝑡)
𝑑

𝑑𝑡
𝑖(𝑡) + 𝑦(𝑡)

𝑑

𝑑𝑡
𝑗(𝑡)        

 = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + 𝑥(𝑡)𝜔(𝑡) 𝑗(𝑡) − 𝑦(𝑡)𝜔(𝑡) 𝑖(𝑡)   (5) 

 

(D1/2) Now,  𝜔 𝐹(𝑡) = 𝜔(𝑡)𝑘(𝑡) is the angular velocity of the  

rotating frame, and 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡) = |

𝑖(𝑡) 0 𝑥(𝑡)

𝑗(𝑡) 0 𝑦(𝑡)

𝑘(𝑡) 𝜔(𝑡) 0

|  

= −𝜔(𝑡)𝑦(𝑡)𝑖(𝑡) − (−𝜔(𝑡)𝑥(𝑡))𝑗(𝑡)  
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Hence, from (5): 

�̇� 𝐹(𝑡) = = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + 𝑥(𝑡)𝜔(𝑡) 𝑗(𝑡) − 𝑦(𝑡)𝜔(𝑡) 𝑖(𝑡)    

= �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)    (6) 

Hence: 

 

Notes 

(i) There are two components to the particle’s velocity relative to  

the fixed frame:  

(a) its velocity relative to the rotating frame (
𝛿𝑟 𝐹

𝛿𝑡
 ),  

and (b) the tangential velocity of the rotating frame, at the point  

occupied by the particle, as it rotates about its axis 

(𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)) 

[Strictly speaking, the velocity relative to the rotating frame is  

�̇�(𝑡)𝑖 + �̇�(𝑡)𝑗 (rather than �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡)), with 𝑖 and 𝑗  

being fixed, from the point of view of an observer in the rotating  

�̇� 𝐹(𝑡) =
𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)   (7), 

where  𝑟 𝐹(𝑡) = 𝑥(𝑡)𝑖(𝑡) + 𝑦(𝑡)𝑗(𝑡), 

𝛿𝑟 𝐹

𝛿𝑡
= �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡),  and 𝜔 𝐹(𝑡) = 𝜔(𝑡)𝑘(𝑡)  

(7) is usually written in textbooks, more concisely, as 

  
𝑑𝑟

𝑑𝑡
=

𝛿𝑟

𝛿𝑡
+ 𝜔 × 𝑟     (8) 
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frame.] 

(ii) As 
𝛿𝑟 𝐹

𝛿𝑡
  will invariably be expressed in terms of the  

rotating frame (ie 𝑖(𝑡) and 𝑗(𝑡)), this means that the other terms  

in the equation will need to be expressed in terms of the rotating  

frame as well. 

Thus, despite being relative to the fixed frame, the two  

components of the velocity are given in terms of the rotating unit  

vectors (but, as mentioned, these can in principle be expressed in  

terms of the fixed unit vectors). 

[A possible source of confusion in this topic is the fact that the  

rotating coordinate system can be thought of as having two roles: 

(a) Providing an alternative set of unit vectors that can be used  

(in place of the fixed unit vectors) when describing motion  

relative to the fixed frame, 

and (b) Indicating how the position, velocity or acceleration of a  

particle appears to an observer in the rotating frame.] 

(iii) In equation (8), 𝜔 may vary with time. 

 

(D2) General case 

(D2/1) From (4), 
𝑑𝑖(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑖(𝑡) etc, so that 

𝑥(𝑡)
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑦(𝑡)

𝑑𝑗(𝑡)

𝑑𝑡
+ 𝑧(𝑡)

𝑑𝑘(𝑡)

𝑑𝑡
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= 𝜔 𝐹(𝑡) × 𝑥(t)𝑖(𝑡) + 𝜔 𝐹(𝑡) × 𝑦(t)𝑗(𝑡) + 𝜔 𝐹(𝑡) × 𝑧(t)𝑘(𝑡)  

= 𝜔 𝐹(𝑡) ×  𝑟 𝐹(𝑡) , and so from (1): 

�̇� 𝐹(𝑡) = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + �̇�(𝑡)𝑘(𝑡)  

+ 𝑥(𝑡)
𝑑

𝑑𝑡
𝑖(𝑡) + 𝑦(𝑡)

𝑑

𝑑𝑡
𝑗(𝑡) + 𝑧(𝑡)

𝑑

𝑑𝑡
𝑘(t)     

= �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + �̇�(𝑡)𝑘(𝑡) +  𝜔 𝐹(𝑡) ×  𝑟 𝐹(𝑡)  

ie  �̇� 𝐹(𝑡) =
𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡),    (7′) 

where 
𝛿𝑟 𝐹

𝛿𝑡
= �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + �̇�(𝑡)𝑘(𝑡)  

As before, this is usually written as  
𝑑𝑟

𝑑𝑡
=

𝛿𝑟

𝛿𝑡
+ 𝜔 × 𝑟 .   (8′) 

Notes 

(i) When the direction of  𝜔 𝐹(𝑡) varies, it is not usually  

feasible to convert 𝑖(𝑡), 𝑗(𝑡) and 𝑘(𝑡) into expressions involving  

𝐼 , 𝐽 and 𝐾. But, as already mentioned, the orientation of the  

rotating frame relative to the fixed frame at any specific moment  

will be determined by the history of the angular velocity vector  

𝜔 𝐹(𝑡) , and so knowledge of 𝜔 𝐹(𝑡) will (in principle) completely  

specify 𝑖(𝑡) , 𝑗(𝑡) , 𝑘(𝑡) in terms of 𝐼 , 𝐽 , 𝐾 , at any specific moment. 

Fortunately, it is usually more convenient anyway to establish  

results in terms of the moving unit vectors. 
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(D3) Application to a general vector     

The result (8) or (8′) can in fact be established for any vector of  

the form 𝑢 𝐹(𝑡) = 𝑢𝑥(𝑡)𝑖(𝑡) + 𝑢𝑦(𝑡)𝑗(𝑡) + 𝑢𝑧(𝑡)𝑘(𝑡) , so that 

�̇� 𝐹(𝑡) = �̇�𝑥(𝑡)𝑖(𝑡) + �̇�𝑦(𝑡)𝑗(𝑡) + �̇�𝑧(𝑡)𝑘(𝑡) + 𝜔 𝐹(𝑡)  × 𝑢 𝐹(𝑡)   

or  �̇� 𝐹(𝑡) =
𝛿𝑢 𝐹(𝑡)

𝛿𝑡
+ 𝜔 𝐹(𝑡)  × 𝑢 𝐹(𝑡)   (9) 

[usually written as  
𝑑𝑢

𝑑𝑡
=

𝛿𝑢

𝛿𝑡
+ 𝜔 × 𝑢  ]  

 

For example (as will be seen below), (9) may be applied 

with  𝑢 𝐹(𝑡) as the velocity vector, or as the angular velocity  

vector 𝜔 𝐹(𝑡) . 

 

(E) Equation of motion  

(E/1) Consider a particle of mass 𝑚 at 𝑃, subject to a force 𝐹(𝑡) in  

the fixed (inertial) frame, so that  𝐹(t) = 𝑚�̈� 𝐹(𝑡),  

(noting that Newton’s 2nd Law is only valid in an inertial frame). 

Then, from (9) with  𝑢 𝐹(𝑡) as the velocity vector �̇� 𝐹 , 

𝐹(t) = 𝑚(
𝛿�̇� 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × �̇� 𝐹(𝑡))     

= 𝑚
𝛿

𝛿𝑡
(

𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡))  

+𝑚𝜔 𝐹(𝑡) × (
𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)), from (7) or (7′) 
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= 𝑚
𝛿2𝑟 𝐹

𝛿𝑡2 + 𝑚
𝛿

𝛿𝑡
(𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡))  

+ 𝑚𝜔 𝐹(𝑡) ×
𝛿𝑟 𝐹

𝛿𝑡
+ 𝑚𝜔 𝐹(𝑡) × (𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡))  

= 𝑚
𝛿2𝑟 𝐹

𝛿𝑡2 + 𝑚 (
𝛿𝜔 𝐹

𝛿𝑡
× 𝑟 𝐹(𝑡) + 𝜔 𝐹(𝑡) ×

𝛿𝑟 𝐹

𝛿𝑡
)  

[the above step would need to be justified, for a fully rigorous  

proof] 

+ 𝑚𝜔 𝐹(𝑡) ×
𝛿𝑟 𝐹

𝛿𝑡
+ 𝑚𝜔 𝐹(𝑡) × (𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡))  

= 𝑚
𝛿2𝑟 𝐹

𝛿𝑡2 + 𝑚
𝛿𝜔 𝐹

𝛿𝑡
× 𝑟 𝐹(𝑡) + 2𝑚𝜔 𝐹(𝑡) ×

𝛿𝑟 𝐹

𝛿𝑡
  

+ 𝑚𝜔 𝐹(𝑡) × (𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡))  

 

And, from (9) again, with 𝜔 𝐹(𝑡)  instead of  𝑢 𝐹(𝑡): 

�̇� 𝐹(𝑡) =
𝛿𝜔 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝜔 𝐹(𝑡) =

𝛿𝜔 𝐹

𝛿𝑡
   , 

so that 𝐹(t) = 𝑚
𝛿2𝑟 𝐹

𝛿𝑡2 + 𝑚�̇� 𝐹(𝑡) × 𝑟 𝐹(𝑡) + 2𝑚𝜔 𝐹(𝑡) ×
𝛿𝑟 𝐹

𝛿𝑡
  

+ 𝑚𝜔 𝐹(𝑡) × (𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡))  

 

If reference to the fixed frame is assumed throughout, as well as  

dependence on time, then we can write this more concisely as:  
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(E/2) Newton’s 2nd Law can be thought of as applying in the 

rotating frame, if we rearrange (10) as below: 

 

 

(F) Apparent forces 

(F/1) The term −𝑚�̇� × 𝑟  will vanish if 𝜔 is constant. 

 

(F/2) −2𝑚𝜔 ×
𝛿𝑟

𝛿𝑡
  is known as the Coriolis force, and depends on  

the velocity 
𝛿𝑟

𝛿𝑡
 of the particle relative to the rotating frame.  

It is perpendicular to both 𝜔 and 
𝛿𝑟

𝛿𝑡
  (by the definition of the  

vector product); ie it is in the 𝑂𝑥𝑦 plane, perpendicular to the  

particle’s path at any instant. 

Equation of motion in the rotating frame: 

𝐹 − 𝑚�̇� × 𝑟 − 2𝑚𝜔 ×
𝛿𝑟

𝛿𝑡
− 𝑚𝜔 × (𝜔 × 𝑟) = 𝑚

𝛿2𝑟

𝛿𝑡2   (11) 

considering the extra terms on the lefthand side to be ‘apparent’ 

forces 

Equation of motion in the fixed frame: 

𝐹 = 𝑚[
𝛿2𝑟

𝛿𝑡2 + �̇� × 𝑟 + 2𝜔 ×
𝛿𝑟

𝛿𝑡
+ 𝜔 × (𝜔 × 𝑟)]     (10) 
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(F/3) −𝑚𝜔 × (𝜔 × 𝑟) is the centrifugal force  

To determine its direction: 

 

 

𝑣 = 𝜔 × 𝑟  (see diagram) is in the plane perpendicular to 𝜔 , 

and so 𝜔 × (𝜔 × 𝑟) is in this plane (being perpendicular to 𝜔) and  

towards the axis of rotation (being perpendicular to 𝜔 × 𝑟), by  

the right-hand rule. 

[Considering  𝑐 = 𝑎 × 𝑏 , two versions of the right-hand rule are: 

(i) Suppose that the plane containing 𝑎 and 𝑏 is a table top, such  

that, as we look down on the table, an anticlockwise rotation  

takes us from 𝑎 to 𝑏 (the fingers of the right hand are curled in an  

anti-clockwise direction). Then 𝑐 (the thumb) will be pointing  

vertically upwards. 

(ii) If the thumb (of your right hand) is pointing in the direction of  

𝑎 , and the index finger is pointing in the direction of 𝑏 , then the  
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middle finger will be pointing in the direction of 𝑐 (assuming that  

the thumb and fingers are at right-angles to each other).] 

 

Hence  −𝑚𝜔 × (𝜔 × 𝑟) is in this plane and away from the axis of  

rotation. 

[Note that, by contrast, the centripetal force on a particle moving  

in a circle is a force on the particle towards the axis of rotation (eg  

supplied by the tension in a string), that keeps the particle on its  

circular path.] 

 

(G) Examples 

Example 1  

An 𝑥𝑦𝑧 coordinate system is rotating with respect to an 𝑋𝑌𝑍  

coordinate system, having the same Origin and assumed to be  

fixed in space (ie it is an inertial system). The angular velocity of  

the 𝑥𝑦𝑧 system relative to the 𝑋𝑌𝑍 system is given by 

𝜔 = 2𝑖 + 𝑡𝑗 − 3𝑡2𝑘 (where 𝑡 is the time in seconds). 

The position vector of a particle at time 𝑡 as observed in the 𝑥𝑦𝑧  

system is given by  𝑟 = 𝑡3𝑖 − 2𝑡𝑗 + 𝑘 (in metres) 

Find at time 𝑡 = 1:  (a) the apparent velocity, and (b) the true  

velocity.  
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Solution 

[Note: At a particular time 𝑡, the 𝑥𝑦𝑧 axes will be orientated in a  

certain way relative to the 𝑋𝑌𝑍 axes (as determined by the  

history of 𝜔), and so 𝜔 at time 𝑡 could (in principle) be expressed  

in terms of 𝐼 , 𝐽 , 𝐾 (the unit vectors associated with the 𝑋𝑌𝑍 axes).  

So the given information completely specifies the behaviour of the  

rotating axes relative to the fixed axes; ie it doesn’t matter that 𝜔  

is given in terms of 𝑖, 𝑗, 𝑘. Because it is natural for 𝑟 to be  

given in terms of 𝑖, 𝑗, 𝑘 (being the position of the particle relative  

to the rotating axes), we will in any case want 𝜔 to be given in  

terms of 𝑖, 𝑗, 𝑘 , in order to be able to determine 𝜔 × 𝑟 . ] 

(a) The apparent velocity at time 𝑡 is  
𝛿𝑟

𝛿𝑡
= 3𝑡2𝑖 − 2𝑗  

At time 𝑡 = 1 this is 3𝑖 − 2𝑗  𝑚𝑠−1. 

(b) Now, 𝜔 × 𝑟 = (2𝑖 + 𝑡𝑗 − 3𝑡2𝑘) × (𝑡3𝑖 − 2𝑡𝑗 + 𝑘)  

= |

𝑖 2 𝑡3

𝑗 𝑡 −2𝑡

𝑘 −3𝑡2 1

| = (𝑡 − 6𝑡3)𝑖 − (2 + 3𝑡5)𝑗 + (−4𝑡 − 𝑡4)𝑘 , 

so that the true velocity at time 𝑡 is   
𝛿𝑟

𝛿𝑡
+ 𝜔 × 𝑟 

= (3𝑡2𝑖 − 2𝑗) + ((𝑡 − 6𝑡3)𝑖 − (2 + 3𝑡5)𝑗 + (−4𝑡 − 𝑡4)𝑘)  

= (3𝑡2 + 𝑡 − 6𝑡3)𝑖 + (−4 − 3𝑡5)𝑗 + (−4𝑡 − 𝑡4)𝑘  
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At time 𝑡 = 1 this is −2𝑖 − 7𝑗 − 5𝑘  𝑚𝑠−1. 

 

Example 2  

A bead on a straight wire slides in such a way that its  

displacement along the wire is 𝐴𝑐𝑜𝑠𝜆𝑡. The wire rotates with  

constant angular speed 𝜔 about an axis which is perpendicular to  

the wire and passes through the middle of the wire O. Find the  

velocity and acceleration of the bead relative to the fixed  

surroundings. 

Solution  

[This is a planar case.] 

Let 𝑂𝑥 and 𝑂𝑦 be axes along and perpendicular to the wire, and  

let 𝑂𝑋 and 𝑂𝑌 be axes fixed relative to the surroundings, such that  

the two sets of axes coincide at time 𝑡 = 0.  

Method 1 (applying the theory in this note step by step, rather  

than just the formula in (11)) 

The position vector of the bead with respect to the fixed frame is  

 𝑟 𝐹(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡)𝑖(𝑡) , where 𝑖(𝑡) is a unit vector along the wire,  

and from (2): 

𝑖(𝑡) = 𝑐𝑜𝑠𝜃(𝑡)𝐼 + 𝑠𝑖𝑛𝜃(𝑡)𝐽  and 𝑗(𝑡) = −𝑠𝑖𝑛𝜃(𝑡)𝐼 + 𝑐𝑜𝑠𝜃(𝑡)𝐽     

The ‘velocity relative to the rotating frame’ (which is one  

component of the velocity relative to the fixed frame) is  
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𝛿𝑟 𝐹(𝑡)

𝛿𝑡
= −𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑖(𝑡)  

[strictly speaking, the velocity relative to the rotating frame is 

= −𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑖 , with 𝑖 being fixed] 

From (7),  �̇� 𝐹(𝑡) =
𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡),  and  𝜔 𝐹(𝑡) = 𝜔𝑘(𝑡) 

so that  �̇� 𝐹(𝑡) = −𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑖(𝑡) + 𝜔𝑘(𝑡) × 𝐴𝑐𝑜𝑠(𝜆𝑡)𝑖(𝑡)  

= −𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑖(𝑡) + 𝜔𝐴𝑐𝑜𝑠(𝜆𝑡)𝑗(𝑡)        (*) 

Then, from (2) again, with 𝜃 = 𝜔𝑡: 

�̇� 𝐹(𝑡) = −𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)(cos(𝜔𝑡)𝐼 + 𝑠𝑖𝑛(𝜔𝑡)𝐽) 

+ 𝜔𝐴𝑐𝑜𝑠(𝜆𝑡)(−𝑠𝑖𝑛(𝜔𝑡)𝐼 + 𝑐𝑜𝑠(𝜔𝑡)𝐽)  

= −𝐴(𝜆𝑠𝑖𝑛(𝜆𝑡)𝑐𝑜𝑠(𝜔𝑡) + 𝜔𝑐𝑜𝑠(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡))𝐼  

+𝐴(𝜔𝑐𝑜𝑠(𝜆𝑡)𝑐𝑜𝑠(𝜔𝑡) − 𝜆𝑠𝑖𝑛(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡))𝐽  

 

The acceleration relative to the fixed frame can be found from  

(9): �̇� 𝐹(𝑡) =
𝛿𝑢 𝐹(𝑡)

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑢 𝐹(𝑡)  , with  𝑢 𝐹(𝑡) = �̇� 𝐹(𝑡), 

so that  �̈� 𝐹(𝑡) =
𝛿�̇� 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × �̇� 𝐹(𝑡)     

 

From (*), �̇� 𝐹(𝑡) = −𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑖(𝑡) + 𝜔𝐴𝑐𝑜𝑠(𝜆𝑡)𝑗(𝑡) , 

so that  
𝛿�̇� 𝐹

𝛿𝑡
= −𝐴𝜆2𝑐𝑜𝑠(𝜆𝑡)𝑖(𝑡) − 𝜆𝜔𝐴𝑠𝑖𝑛(𝜆𝑡)𝑗(𝑡) 

[treating 𝑖(𝑡) and 𝑗(𝑡) as constant, for the purposes of  
𝛿

𝛿𝑡
 ] 
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And  𝜔 𝐹(𝑡) × �̇� 𝐹(𝑡) = 𝜔𝑘(𝑡) × (−𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑖(𝑡) + 𝜔𝐴𝑐𝑜𝑠(𝜆𝑡)𝑗(𝑡)) 

= −𝜔𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑗(𝑡) − 𝜔2𝐴𝑐𝑜𝑠(𝜆𝑡)𝑖(𝑡)  

 

So  �̈� 𝐹(𝑡) =
𝛿�̇� 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × �̇� 𝐹(𝑡)     

= [−𝐴𝜆2𝑐𝑜𝑠(𝜆𝑡)𝑖(𝑡) − 𝜆𝜔𝐴𝑠𝑖𝑛(𝜆𝑡)𝑗(𝑡)]  

+[−𝜔𝐴𝜆𝑠𝑖𝑛(𝜆𝑡)𝑗(𝑡) − 𝜔2𝐴𝑐𝑜𝑠(𝜆𝑡)𝑖 (𝑡)]  

= −𝐴(𝜆2 + 𝜔2) cos(𝜆𝑡) 𝑖(𝑡) − 2𝐴𝜔𝜆𝑠𝑖𝑛(𝜆𝑡)𝑗(𝑡)   

 

Then, as  𝑖(𝑡) = 𝑐𝑜𝑠𝜃(𝑡)𝐼 + 𝑠𝑖𝑛𝜃(𝑡)𝐽   

and 𝑗(𝑡) = −𝑠𝑖𝑛𝜃(𝑡)𝐼 + 𝑐𝑜𝑠𝜃(𝑡)𝐽 ,  and 𝜃 = 𝜔𝑡:   

�̈� 𝐹(𝑡) = −𝐴(𝜆2 + 𝜔2) cos(𝜆𝑡)(cos (𝜔𝑡)𝐼 + sin (𝜔𝑡)𝐽)  

−2𝐴𝜔𝜆𝑠𝑖𝑛(𝜆𝑡)(−𝑠𝑖𝑛(𝜔𝑡)𝐼 + 𝑐𝑜𝑠(𝜔𝑡)𝐽)  

= [−𝐴(𝜆2 + 𝜔2) cos(𝜆𝑡) 𝑐𝑜𝑠(𝜔𝑡) + 2𝐴𝜔𝜆𝑠𝑖𝑛(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡)]𝐼  

+[−𝐴(𝜆2 + 𝜔2) cos(𝜆𝑡) 𝑠𝑖𝑛(𝜔𝑡) − 2𝐴𝜔𝜆𝑠𝑖𝑛(𝜆𝑡)𝑐𝑜𝑠(𝜔𝑡)]𝐽  

 

Method 2 (independent of the above theory) 

𝑟 𝐹(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡)𝑖(𝑡)   and  𝑖(𝑡) = 𝑐𝑜𝑠𝜃(𝑡)𝐼 + 𝑠𝑖𝑛𝜃(𝑡)𝐽, 

so that   𝑟 𝐹(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡)(𝑐𝑜𝑠𝜃(𝑡)𝐼 + 𝑠𝑖𝑛𝜃(𝑡)𝐽) 

Then, as 𝜃 = 𝜔𝑡, 
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𝑟 𝐹(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡) cos(𝜔𝑡) 𝐼 + 𝐴𝑐𝑜𝑠(𝜆𝑡)sin(𝜔𝑡) 𝐽  

Thus, writing 𝑟 𝐹(𝑡) = 𝑋(𝑡)𝐼 + 𝑌(𝑡)𝐽 , 

𝑋(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡) cos(𝜔𝑡)  and  𝑌(𝑡) = 𝐴𝑐𝑜𝑠(𝜆𝑡)sin(𝜔𝑡) 

Hence �̇�(𝑡) = −𝐴𝜆 sin(𝜆𝑡) cos(𝜔𝑡) − 𝐴𝑐𝑜𝑠(𝜆𝑡). 𝜔sin(𝜔𝑡) 

and  �̇�(𝑡) = −𝐴𝜆 sin(𝜆𝑡) sin(𝜔𝑡) + 𝐴𝑐𝑜𝑠(𝜆𝑡). 𝜔𝑐𝑜𝑠(𝜔𝑡)  

Then   �̇� 𝐹(𝑡) = �̇�(𝑡)𝐼 + �̇�(𝑡)𝐽 

= −𝐴(𝜆𝑠𝑖𝑛(𝜆𝑡)𝑐𝑜𝑠(𝜔𝑡) + 𝜔𝑐𝑜𝑠(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡))𝐼  

+𝐴(𝜔𝑐𝑜𝑠(𝜆𝑡)𝑐𝑜𝑠(𝜔𝑡) − 𝜆𝑠𝑖𝑛(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡))𝐽 , 

and  �̈� 𝐹(𝑡) = �̈�(𝑡)𝐼 + �̈�(𝑡)𝐽 , 

where  �̈�(𝑡) = −𝐴𝜆2 cos(𝜆𝑡) cos(𝜔𝑡) + 𝐴𝜆𝜔 sin(𝜆𝑡) sin(𝜔𝑡) 

+𝐴𝜆𝜔𝑠𝑖𝑛(𝜆𝑡)sin (𝜔𝑡) −𝐴𝜔2𝑐𝑜𝑠(𝜆𝑡)cos(𝜔𝑡) 

and �̈�(𝑡) = −𝐴𝜆2𝑐𝑜𝑠(𝜆𝑡) sin(𝜔𝑡) − 𝐴𝜆𝜔 sin(𝜆𝑡) cos(𝜔𝑡) 

− 𝐴𝜆𝜔𝑠𝑖𝑛(𝜆𝑡). cos(𝜔𝑡) − 𝐴𝜔2𝑐𝑜𝑠(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡),  

so that   

�̈� 𝐹(𝑡) = [−𝐴(𝜆2 + 𝜔2) cos(𝜆𝑡) 𝑐𝑜𝑠(𝜔𝑡) + 2𝐴𝜔𝜆𝑠𝑖𝑛(𝜆𝑡)𝑠𝑖𝑛(𝜔𝑡)]𝐼  

+[−𝐴(𝜆2 + 𝜔2) cos(𝜆𝑡) 𝑠𝑖𝑛(𝜔𝑡) − 2𝐴𝜔𝜆𝑠𝑖𝑛(𝜆𝑡)𝑐𝑜𝑠(𝜔𝑡)]𝐽  

 

Example 3  

A straight wire of length 2𝑎 rotates with constant angular velocity  

𝜔 about a fixed perpendicular axis through the centre of the wire.  

A bead of mass 𝑚 is placed on the wire at its mid-point and  
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released. If friction is negligible and the wire rotates in a  

horizontal plane, establish a differential equation for the motion  

of the bead, relative to the wire. 

Solution 

[This is a planar case again.] 

Once again, let 𝑂𝑥 and 𝑂𝑦 be axes along and perpendicular to the  

wire, and let 𝑂𝑋 and 𝑂𝑌 be axes fixed relative to the  

surroundings, such that the two sets of axes coincide at time 

𝑡 = 0.  

From (11), the equation of motion for the bead, relative to the  

wire is  𝐹 − 𝑚�̇� × 𝑟 − 2𝑚𝜔 ×
𝛿𝑟

𝛿𝑡
− 𝑚𝜔 × (𝜔 × 𝑟) = 𝑚

𝛿2𝑟

𝛿𝑡2   

with  𝐹 = 𝑅𝑗 ,  𝜔 = 𝜔𝑘 , 𝑟 = 𝑥𝑖  

so that  �̇� = 0 , 
𝛿𝑟

𝛿𝑡
= �̇�𝑖 , 

𝛿2𝑟

𝛿𝑡2 = �̈�𝑖  

Hence  𝑅𝑗 − 2𝑚𝜔𝑘 × �̇�𝑖 − 𝑚𝜔𝑘 × (𝜔𝑘 × 𝑥𝑖) = 𝑚�̈�𝑖 , 

so that  𝑅𝑗 − 2𝑚𝜔�̇�𝑗 − 𝑚𝜔𝑘 × (𝜔𝑥𝑗) = 𝑚�̈�𝑖 , 

and 𝑅𝑗 − 2𝑚𝜔�̇�𝑗 + 𝑚𝜔2𝑥𝑖 = 𝑚�̈�𝑖  

Then, equating 𝑖 terms:  �̈� = 𝜔2𝑥 (the equation of motion of the  

bead), (and also, equating 𝑗 terms:  𝑅 = 2𝑚𝜔�̇�). 
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Appendix: List of results 

(B/2)(ii) �̇� 𝐹(𝑡) = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + �̇�(𝑡)𝑘(𝑡)  

+ 𝑥(𝑡)
𝑑

𝑑𝑡
𝑖(𝑡) + 𝑦(𝑡)

𝑑

𝑑𝑡
𝑗(𝑡) + 𝑧(𝑡)

𝑑

𝑑𝑡
𝑘(t)    (1) 

(C1/1) 

𝑖(𝑡) = 𝑐𝑜𝑠𝜃(𝑡)𝐼 + 𝑠𝑖𝑛𝜃(𝑡)𝐽  and 𝑗(𝑡) = −𝑠𝑖𝑛𝜃(𝑡)𝐼 + 𝑐𝑜𝑠𝜃(𝑡)𝐽    (2) 

(C1/4) 
𝑑

𝑑𝑡
𝑖(𝑡) = 𝜔(𝑡)𝑗(𝑡)  ;   

𝑑

𝑑𝑡
𝑗(𝑡) = −𝜔(𝑡)𝑖(𝑡)     (3) 

(C2/2)  
𝑑𝑖(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑖(𝑡),  

𝑑𝑗(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑗(𝑡) 

and  
𝑑𝑘(𝑡)

𝑑𝑡
= 𝜔 𝐹(𝑡) × 𝑘(𝑡)        (4) 

(D1/1) 

�̇� 𝐹(𝑡) = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + 𝑥(𝑡)𝜔(𝑡) 𝑗(𝑡) − 𝑦(𝑡)𝜔(𝑡) 𝑖(𝑡)   (5) 

(D1/2) �̇� 𝐹(𝑡) = �̇�(𝑡)𝑖(𝑡) + �̇�(𝑡)𝑗(𝑡) + 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)    (6) 

(D1/2) �̇� 𝐹(𝑡) =
𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡)  × 𝑟 𝐹(𝑡)   (7) 

𝑑𝑟

𝑑𝑡
=

𝛿𝑟

𝛿𝑡
+ 𝜔 × 𝑟     (8) 

(D2/1) �̇� 𝐹(𝑡) =
𝛿𝑟 𝐹

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑟 𝐹(𝑡)    (7′) 

(D2/1)  
𝑑𝑟

𝑑𝑡
=

𝛿𝑟

𝛿𝑡
+ 𝜔 × 𝑟    (8′) 

(D3) �̇� 𝐹(𝑡) =
𝛿𝑢 𝐹(𝑡)

𝛿𝑡
+ 𝜔 𝐹(𝑡) × 𝑢 𝐹(𝑡)   (9) 

(E/1) 𝐹 = 𝑚[
𝛿2𝑟

𝛿𝑡2 + �̇� × 𝑟 + 2𝜔 ×
𝛿𝑟

𝛿𝑡
+ 𝜔 × (𝜔 × 𝑟)]     (10) 

(E/2) 𝐹 − 𝑚�̇� × 𝑟 − 2𝑚𝜔 ×
𝛿𝑟

𝛿𝑡
− 𝑚𝜔 × (𝜔 × 𝑟) = 𝑚

𝛿2𝑟

𝛿𝑡2   (11) 


