Rotating Bodies - Q1 [Problem/H] (20/6/21)

Initially block A is held at rest on a smooth table. The pulley P can rotate freely. The string leading from A to B, passing over P , is light and inextensible.

The pulley is a uniform disc of radius r, and the blocks can be modelled as particles.

Block A is released. The tension in the section of the string $A P$ is T_{A} and in $P B$ it is T_{B}.

Assuming that the string does not slip on the pulley, and that A does not reach P,
(i) Show that the angular acceleration of the pulley is $\frac{3 g}{7 r} \mathrm{rads}^{-2}$
(ii) Find T_{A} and T_{B} in terms of m and g.

Solution

(i) The moment of inertia, I of P is $\frac{1}{2}(4 m) r^{2}=2 m r^{2}$ [standard result for a disc about its axis]

The total moment of the external forces on P about its axis, $C=I \ddot{\theta}$, where $\ddot{\theta}$ is the angular acceleration of P.
$C=T_{B} r-T_{A} r$
Hence $r\left(T_{B}-T_{A}\right)=2 m r^{2} \ddot{\theta}$

The acceleration of A and B is $r \ddot{\theta}$ [the distance fallen by $B=r \theta$ (the arc length travelled by a point on the circumference of the pulley), and this is differentiated twice]

So, for $A, \mathrm{~N} 2 \mathrm{~L} \Rightarrow T_{A}=(2 m)(r \ddot{\theta})$
and for B: $(3 m) g-T_{B}=(3 m)(r \ddot{\theta})$

Substituting for T_{A} and T_{B} from (2) \& (3) into (1):
$(3 m g-3 m r \ddot{\theta})-2 m r \ddot{\theta}=2 m r \ddot{\theta}$
so that $7 m r \ddot{\theta}=3 m g$, and $\ddot{\theta}=\frac{3 g}{7 r} \quad r a d s^{-2}$

Alternative method

By Conservation of energy,
$\frac{1}{2} I(\dot{\theta})^{2}+\frac{1}{2}(2 m)(r \dot{\theta})^{2}+\frac{1}{2}(3 m)(r \dot{\theta})^{2}-(3 m) g(r \theta)=$ constant
(taking the initial position of B as the zero of PE; as before, $r \theta$ is the distance that B has fallen when P has rotated by θ rad)

Hence $\left\{\left(\frac{1}{2}\right) 2 m r^{2}+\left(\frac{5}{2}\right) m r^{2}\right\}(\dot{\theta})^{2}-3 m g r \theta=$ constant
Differentiating wrt time,
$\left(\frac{7}{2}\right) m r^{2}(2) \dot{\theta} \ddot{\theta}-3 m g r \dot{\theta}=0$,
so that $7 r \ddot{\theta}-3 g=0$, and $\ddot{\theta}=\frac{3 g}{7 r} \quad r a d s^{-2}$
(ii) From (2), $T_{A}=2 m r\left(\frac{3 g}{7 r}\right)=\frac{6 m g}{7}$

From (3), $T_{B}=3 m g-3 m r\left(\frac{3 g}{7 r}\right)=\frac{12 m g}{7}$

