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Rolling Wheel – Friction  (11 pages; 3/5/23) 

(1) Friction is normally thought of as a force providing resistance 

to the motion of an object (eg a block sliding on a surface). In the 

case of rolling objects, such as a wheel (assuming no slipping is 

involved), we will see that no work is done by friction (and hence 

no energy is lost to friction), if it is assumed that the wheel is 

perfectly circular. 

However, in practice the wheel will be deformed near the point of 

contact, and because of prolonged contact with the surface 

negative work will be done by this so-called ‘rolling friction’, 

which is therefore a type of resistance to motion. 

Any exam question which mentions friction encountered by a car 

or train etc. is usually referring to ‘rolling friction’ only – though 

(as will be seen below) ordinary friction also plays a crucial role 

in the motion. 

 

(2) When a wheel rolls (assuming no slipping takes place), its 

point of contact with the surface is stationary. [See “Rolling Wheel 

– Speed of point on circumference”.] Effectively the wheel is 

continually toppling about the point of contact. 

(Note that it is also possible for there to be a combination of 

rolling and slipping – as when a ten-pin bowling ball is thrown, 

for example.) 

Because the point of contact with the surface is stationary, 

ordinary friction (as opposed to ‘rolling friction’) can be 

investigated by considering the forces on an imaginary stationary 

block at the point of contact. Friction will act to oppose attempted 

motion of this block, arising from one or more forces. As will be 

seen, the direction of friction will depend on the circumstances of 

the situation. 
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For the following examples, air resistance and rolling friction are 

being ignored. 

 

(3) Example A: Tyre rolling on level ground at constant speed. 

Here this is no force on the imaginary stationary block in the 

direction of motion (either translational or by way of torque), and 

so no friction is acting. 

 

(4) Example B: Front-wheel drive car accelerating on level ground 

Front Wheel 

 

 

[Only forces affecting the motion are shown.] 

There is a clockwise torque 𝑇,  with the wheel rotating in a 

clockwise sense, and moving to the right.  

The imaginary stationary block is subject to the force 𝑇 to the left, 

and so a frictional force 𝑓 acts to oppose this, to the right.  

[Note that, in the usual case of a stationary block subject to a force 

𝑇, the frictional force 𝑓 would equal 𝑇, as the block is in 

equilibrium. But in the case of the rolling wheel, the situation is 

complicated by the fact that there is angular acceleration (the  



 fmng.uk 

3 
 

 

wheel is turning faster and faster). To find out the value of friction 

we need to set out the equations of motion.] 

 

Equations can be set up as follows: 

N2L applied to translational motion of the wheel: 

𝑇 − 𝑇 + 𝑓 = 𝑀𝑣̇, 

where 𝑣 is the translational velocity (taking left to right as the 

positive direction) and 𝑀 is the wheel’s share of the mass of the 

car 

Net moment of forces about centre of mass = Moment of Inertia 

(about centre of mass) × Angular acceleration 

[angular equivalent of N2L]: 

𝜏 − 𝑟𝑓 = 𝐼𝑊𝜔̇  (where torque 𝜏 = 2𝑟𝑇),  

where 𝜔̇ is the angular acceleration (taking clockwise as the 

positive direction) 

and 𝐼𝑊 =
1

2
𝜆𝑀𝑟2, for a disc of mass 𝜆𝑀 and radius 𝑟, about its axis 

(the wheel having mass 𝜆𝑀, where 0 < 𝜆 < 1) 

Rolling condition: the point of contact of the wheel with the 

ground is stationary. The translational velocity of the point of 

contact has two components: 𝑣 for the centre of mass, and −𝜔𝑟 

due to rotation about the centre of mass; so that 𝑣 − 𝜔𝑟 = 0, and 

differentiating: 𝑣̇ = 𝜔̇𝑟  

 

So  𝜏 − 𝑟𝑀𝑣̇ =
1

2
𝜆𝑀𝑟2 𝑣̇

𝑟
; 𝜏 = (1 +

𝜆

2
)𝑀𝑟𝑣̇  & 𝑣̇ =

𝜏

(1+
𝜆

2
)𝑀𝑟
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Also, 𝑓 = 𝑀𝑣̇ =
𝜏

(1+
𝜆

2
)𝑟

=
2𝑟𝑇

(1+
𝜆

2
)𝑟

=
2𝑇

(1+
𝜆

2
)
 

 

When the wheel is accelerating (or decelerating), the friction does 

no work, as the point of contact with the surface is stationary – ie 

there is no displacement in the direction of the force.  

 

When the wheel is on the point of slipping, 𝑓 = 𝜇𝑠𝑀𝑔 (where 𝜇𝑠 is 

the static coefficient of friction). 

Then 𝑓 = 𝑀𝑣̇ ⇒ 𝜇𝑠𝑀𝑔 = 𝑀𝑣̇ ⇒ 𝑣̇ = 𝜇𝑠𝑔 (ie this is the maximum 

acceleration possible). 

 

With dynamic friction, the frictional force does negative work, as 

the point of contact is now moving, and the frictional force will be 

acting to oppose motion – ie acting in a direction opposite to the 

direction of travel. Thus, when the wheel is slipping, the frictional 

force is hindering the acceleration, instead of aiding it. 

[This situation also applies to the rear wheel of a bike being 

pedalled.] 

 

Rear wheel  

 

 

 

 

 

𝑓1 
F 
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For the rear wheel, there is no torque from the engine, but the 

wheel is pulled along by the chassis, and friction 𝑓1 now acts to 

the left, to oppose the attempted motion. 

Now the equations are: 

𝐹 − 𝑓1 = 𝑀𝑣̇  

𝑓1𝑟 = 𝐼𝑊𝜔̇  

[This situation also applies to the front wheel of a bike being 

pedalled.] 

 

(5) Example C: Front-wheel drive car braking on level ground 

 

 

 

 

 

The diagram shows the front wheel subject to an anti-clockwise 

torque, but still rotating in a clockwise sense, and moving to the 

right.  

Assuming that there is no sliding, the imaginary stationary block 

would now be subject to a torque force 𝑇 to the right, and the 

frictional force will now act to the left (opposing the torque 

force). 

The equations of motion are: 

−𝑇 − 𝑓 + 𝑇 = 𝑀𝑣̇  

−𝜏 + 𝑟𝑓 = 𝐼𝑊𝜔̇   

T 

T 

f 
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𝑣̇ = 𝜔̇𝑟  

So  −𝜏 + 𝑟(−𝑀𝑣̇) =
1

2
𝜆𝑀𝑟2 𝑣̇

𝑟
; 𝜏 = −(1 +

𝜆

2
)𝑀𝑟𝑣̇  & 𝑣̇ = −

𝜏

(1+
𝜆

2
)𝑀𝑟

 

 

[Compare Examples B and C with the situations of (a) walking on 

a fairly firm surface, and speeding up, and (b) slowing down on 

the same surface. In the case of (a), friction is the only external 

force in the horizontal direction, and would therefore be expected 

to be in the direction of motion (the feet push down on the 

ground, and by N3L the ground pushes back on the feet: friction is 

the horizontal component of this reaction force). In the case of 

(b), friction is now helping the process of slowing down, and is 

opposite to the direction of motion.] 

 

When the wheel is on the point of slipping, 

−𝑓 = 𝑀𝑣̇ ⇒ −𝜇𝑠𝑀𝑔 = 𝑀𝑣̇ ⇒ 𝑣̇ = −𝜇𝑠𝑔  

So 𝜇𝑠𝑔  is the maximum deceleration possible, and when the 

wheel starts to slides, so that 𝑓 = 𝜇𝑑𝑀𝑔 (where 𝜇𝑑 is the dynamic 

coefficient of friction), the maximum deceleration is the (usually) 

lower value of  𝜇𝑑𝑔. Thus if slipping occurs whilst braking, the 

stopping distance is greater. 
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(6) Example D: Tyre rolling down a slope 

[This is mathematically equivalent to the wheel of a bike that is 

being pushed by the handlebars, so that it accelerates - with the 

component of the weight down the slope taking the place of the 

pushing force.] 

 

 

 

 

 

(where 𝜃 is the angle of the slope) 

Assuming slipping doesn’t occur, the imaginary stationary block is 

subject to the force 𝑀𝑔𝑠𝑖𝑛𝜃 down the slope, and friction therefore 

opposes this force. (Once again, because of the rotational 

acceleration, 𝑓 ≠ 𝑀𝑔𝑠𝑖𝑛𝜃. ) 

The equations of motion are: 

−𝑓 + 𝑀𝑔𝑠𝑖𝑛𝜃 = 𝑀𝑣̇  

𝑟𝑓 = 𝐼𝑊𝜔̇   

𝑣̇ = 𝜔̇𝑟  

So  𝑟(𝑀𝑔𝑠𝑖𝑛𝜃 − 𝑀𝑣̇) =
1

2
𝑀𝑟2 𝑣̇

𝑟
; 𝑔𝑠𝑖𝑛𝜃 − 𝑣̇ =

1

2
𝑣̇  & 𝑣̇ =

2𝑔𝑠𝑖𝑛𝜃

3
 

 

  

f 
𝑀𝑔𝑠𝑖𝑛𝜃 
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(7) Example E: Tyre rolling up a slope 

 

 

 

 

 

 

[This is equivalent to the wheel of a bike that is being pulled by 

the handlebars, so that it decelerates.] 

 

Again, the imaginary stationary block is subject to the force 

𝑀𝑔𝑠𝑖𝑛𝜃 down the slope, and friction opposes this force.  

 

The equations of motion are: 

𝑓 − 𝑀𝑔𝑠𝑖𝑛𝜃 = 𝑀𝑣̇  

−𝑟𝑓 = 𝐼𝑊𝜔̇   

𝑣̇ = 𝜔̇𝑟  

So  −𝑟(𝑀𝑔𝑠𝑖𝑛𝜃 + 𝑀𝑣̇) =
1

2
𝑀𝑟2 𝑣̇

𝑟
; −𝑔𝑠𝑖𝑛𝜃 − 𝑣̇ =

1

2
𝑣̇   

& 𝑣̇ = −
2𝑔𝑠𝑖𝑛𝜃

3
 

  

f 

𝑀𝑔𝑠𝑖𝑛𝜃 
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(8) Example F: Front-wheel drive car accelerating down a slope 

 

 

 

 

 

 

The diagram show the front wheel (assumed to be rolling rather 

than slipping). There are now two forces on the imaginary 

stationary block (𝑇 & 𝑀𝑔𝑠𝑖𝑛𝜃), in opposing directions. Supposing 

for the moment that the frictional force acts down the slope: 

The equations of motion are: 

𝑇 + 𝑀𝑔𝑠𝑖𝑛𝜃 − 𝑇 + 𝑓 = 𝑀𝑣̇  

𝜏 − 𝑟𝑓 = 𝐼𝑊𝜔̇   (where 𝜏 = 2𝑟𝑇) 

𝑣̇ = 𝜔̇𝑟  

So  𝜏 − 𝑟(𝑀𝑣̇ − 𝑀𝑔𝑠𝑖𝑛𝜃) =
1

2
𝜆𝑀𝑟2 𝑣̇

𝑟
;  

𝜏 + 𝑀𝑟𝑔𝑠𝑖𝑛𝜃 = (1 +
𝜆

2
)𝑀𝑟𝑣̇  & 𝑣̇ =

𝜏

(1+
𝜆

2
)𝑀𝑟

+
1

(1+
𝜆

2
)

𝑔𝑠𝑖𝑛𝜃  

 

Now, 𝑓 = 𝑀𝑣̇ − 𝑀𝑔𝑠𝑖𝑛𝜃, so that 𝑓 > 0 when  𝑣̇ > 𝑔𝑠𝑖𝑛𝜃; 

ie when 
𝜏

(1+
𝜆

2
)𝑀𝑟

+
1

(1+
𝜆

2
)

𝑔𝑠𝑖𝑛𝜃 > 𝑔𝑠𝑖𝑛𝜃,   

or  
𝜏

(1+
𝜆

2
)𝑀𝑟

> (1 −
1

(1+
𝜆

2
)
)𝑔𝑠𝑖𝑛𝜃; ie  𝜏 > ((1 +

𝜆

2
) − 1)𝑀𝑟𝑔𝑠𝑖𝑛𝜃 

f 

𝑀𝑔𝑠𝑖𝑛𝜃 
T 

T 
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ie 𝜏 >
𝜆

2
𝑀𝑟𝑔𝑠𝑖𝑛𝜃 

ie the frictional force acts up the slope instead if 𝜏 <
𝜆

2
𝑀𝑟𝑔𝑠𝑖𝑛𝜃  

(Consider the extreme case where  𝜏 = 0. This is Example D, 

where friction acts up the slope.) 

 

(9) Example G: Front-wheel drive car braking up a slope 

 

 

 

 

 

 

The diagram shows the front wheel. Supposing again that 

the frictional force acts down the slope: 

 

The equations of motion are: 

−𝑇 − 𝑀𝑔𝑠𝑖𝑛𝜃 − 𝑓 + 𝑇 = 𝑀𝑣̇  

−𝜏 + 𝑟𝑓 = 𝐼𝑊𝜔̇   (where 𝜏 = 2𝑟𝑇) 

𝑣̇ = 𝜔̇𝑟  

So  −𝜏 + 𝑟(−𝑀𝑣̇ − 𝑀𝑔𝑠𝑖𝑛𝜃) =
1

2
𝜆𝑀𝑟2 𝑣̇

𝑟
;  

−𝜏 − 𝑀𝑟𝑔𝑠𝑖𝑛𝜃 = (1 +
𝜆

2
)𝑀𝑟𝑣̇  & 𝑣̇ = −

𝜏

(1+
𝜆

2
)𝑀𝑟

−
𝑔𝑠𝑖𝑛𝜃

(1+
𝜆

2
)
  

Now, 𝑓 = −𝑀𝑣̇ − 𝑀𝑔𝑠𝑖𝑛𝜃, 

𝑀𝑔𝑠𝑖𝑛𝜃 

T

𝑣̇ =
2𝜏

3𝑀𝑟
+

2

3
𝑔𝑠𝑖𝑛𝜃 T

𝑣̇ =
2𝜏

3𝑀𝑟
+

2

3
𝑔𝑠𝑖𝑛𝜃 

f 
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so that 𝑓 > 0 when  𝑣̇ < −𝑔𝑠𝑖𝑛𝜃;  

ie when −
𝜏

(1+
𝜆

2
)𝑀𝑟

−
𝑔𝑠𝑖𝑛𝜃

(1+
𝜆

2
)

< −𝑔𝑠𝑖𝑛𝜃,  

or  
𝜏

(1+
𝜆

2
)𝑀𝑟

> (1 −
1

(1+
𝜆

2
)
)𝑔𝑠𝑖𝑛𝜃; ie 𝜏 > 𝑀𝑟((1 +

𝜆

2
) − 1)𝑔𝑠𝑖𝑛𝜃 

ie  𝜏 >
𝜆

2
𝑀𝑟𝑔𝑠𝑖𝑛𝜃 

ie the frictional force acts up the slope instead if 𝜏 <
𝜆

2
𝑀𝑟𝑔𝑠𝑖𝑛𝜃  

 (Consider the extreme case where  𝜏 = 0. This is Example E, 

where friction acts up the slope.) 


