Probability - Q2 [Practice/E] (23/5/21)

The events A and B are independent and are such that $P(A)=\frac{1}{5}$ and $P(A \cup B)=\frac{1}{2}$

Find:
(i) $P(B)$
(ii) $P\left(A^{\prime} \cup B^{\prime}\right)$
(iii) $P\left(B^{\prime} \cap A\right)$
(iv) $P\left(B^{\prime} \mid A\right)$

Solution
(i) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$\& P(A \cap B)=P(A) P(B)$, from independence
Hence $\frac{1}{2}=\frac{1}{5}+P(B)-\frac{1}{5} P(B) \Rightarrow\left(\frac{1}{2}-\frac{1}{5}\right)=\frac{4}{5} P(B)$
$\Rightarrow P(B)=\frac{3}{10}\left(\frac{5}{4}\right)=\frac{3}{8}$
[At this point, a Venn diagram could be filled in, using $\left.P(A \cap B)=\frac{1}{5} P(B)=\frac{3}{40}\right]$

(ii) $P\left(A^{\prime} \cup B^{\prime}\right)=P\left([A \cap B]^{\prime}\right)=1-P(A \cap B)=1-\frac{1}{5} P(B)=1-$ $\frac{3}{40}=\frac{37}{40}$ (or from Venn diagram)
(iii) As A and B are independent, so are A and B^{\prime}
[Independence of A and $B \Rightarrow$ knowledge that A has occurred doesn't affect the probability of B occurring, or the probability of B not occurring]

Hence $P\left(B^{\prime} \cap A\right)=P\left(B^{\prime}\right) P(A)=(1-P(B)) P(A)=\frac{5}{8}\left(\frac{1}{5}\right)=\frac{1}{8}$ (or from Venn diagram)
(iv) As A and B^{\prime} are independent, $P\left(B^{\prime} \mid A\right)=P\left(B^{\prime}\right)=1-$ $P(B)=\frac{5}{8}$
(or from Venn diagram; or $P\left(B^{\prime} \mid A\right)=\frac{P\left(B^{\prime} \cap A\right)}{P(A)}=\frac{\left(\frac{1}{8}\right)}{\left(\frac{1}{5}\right)}=\frac{5}{8}$)

