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(1) Types of rigid body motion 

The most general type of rigid body motion concerns an irregular-

shaped body, moving in 3D, and possessing both linear and 

rotational motion (both of which could involve acceleration). At 

any point in time, there will be an axis of rotation, and this could 

vary with time. 

This note is restricted to the simpler case of  ‘planar’ motion, 

concerning a 3D body that possesses reflective symmetry in a 

particular fixed plane, where all points of the body only move 

parallel to the fixed plane.  

In general, the body can be considered to possess a combination 

of linear motion (possibly accelerating), and rotational motion 

about an axis through a certain point, perpendicular to the fixed 

plane (with possibly accelerating rotation).  

The point is often the centre of mass of the body, but use can 

sometimes be made of the Instantaneous Centre of Rotation 

(discussed below). 

A special case of planar motion is where the body is a lamina (ie 

has negligible width in the dimension perpendicular to the plane).  

 

(2) Possible approaches 

The simplest approach for dealing with a system of bodies 

(including particles) will often be an energy method. Otherwise 

the other main approach (excluding more advanced techniques) 

will be to set up equations of motion for each component of the 

system. These equations will be for either linear or rotational 

motion. 
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There may also be constraints on the motion (for example, it may 

be given that a cylinder is rolling, rather than slipping), and these 

can give rise to further equations. 

As with equilibrium problems, it may be the case that not all of 

the available equations are needed; for example, if they involve 

forces that are not required to be found. 

 

(3) Notation 

The necessary theory is derived by treating the rigid body as 

though it were made up of individual particles. 

The notation adopted in this note is as follows: 

By default, vectors are relative to the Origin (O) of the frame of 

reference. 

𝑟 𝐺  is the position vector (relative to O) of the Centre of Mass (G) 

of a rigid body; 𝑟 𝑖  is the position vector (relative to O) of particle 

𝑖; similarly for the velocity vectors 𝑣𝐺  and 𝑣 𝑖 . 

𝑟 𝐴𝐵 is the position vector of B relative to A (and similarly for 

𝑣 𝐴𝐵); eg 𝑟 𝐺𝐶  is the position vector of the Instantaneous Centre of 

Rotation (C) relative to the Centre of Mass, and 𝑟 𝐺𝑖 is the position 

vector of particle 𝑖 relative to G. 

 

(4) Angular Velocity 

(1) Angular velocity of a particle 

Consider a particle moving in a circular path, with (linear) speed 

𝑣(𝑡).  
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Referring to the diagram, arc length 𝑠(𝑡) = 𝑟𝜃(𝑡) [𝑟 is constant] 

The angular speed is  
𝑑𝜃(𝑡)

𝑑𝑡
 𝑜𝑟 𝜃̇ (often denoted 𝜔). 

And  𝑣(𝑡) =
𝑑𝑠(𝑡)

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑟𝜃(𝑡)) = 𝑟

𝑑𝜃(𝑡)

𝑑𝑡
= 𝑟𝜃̇ or 𝑟𝜔 

The angular velocity is  𝑣(𝑡) = 𝑟𝜔𝑘 , where 𝑘 is a unit vector (in 

the plane of the circle) in the direction of motion of the particle. 

 

(2) Angular velocity of a lamina 

 



  fmng.uk 

5 
 

 

Let OX be a line segment fixed in the frame of reference (see 

diagram). Let PQ be a line segment joining two points of the 

lamina, and RS a line segment joining two other points of the 

lamina. Let the angle between OX and PQ extended be 𝜃, and the 

angle between OX and RS extended be 𝜙, where 𝜙 = 𝜃 + 𝛼. Note 

that 𝛼 is defined by the intersection of the lines PQ and RS (both 

extended), and therefore 𝛼 is fixed as the lamina turns. 

Hence 𝜃̇ = 𝜙̇, as 𝛼 is fixed, and so each line of the lamina is 

turning at the same rate, and the angular velocity of the lamina 

can be defined uniquely as 𝜔 = 𝜃̇. 

Thus the angular velocity is a measure of the lamina’s rate of 

rotation relative to a fixed frame of reference (and this rate will in 

general vary with time). To establish 𝜔, we can therefore consider 

the angle made by a line fixed in the lamina with a line fixed in the 

frame of reference (see 𝜃 in Example 12.2). 

Also, there will usually be an Instantaneous Centre of Rotation, 

about which the lamina will (instantaneously) have angular 

velocity 𝜔 (discussed shortly). 

 

(5) Moments of Inertia: see separate note 

 

(6) Instantaneous Centre of Rotation 

(6.1) Provided that there is some rotation of the body (in addition 

to any translational motion) [see note below], there will be at any 

time a point of the body (or an extension of it) that is 

instantaneously at rest relative to the plane of motion (although 

this point may have acceleration relative to the plane). This point 

is referred to as the Instantaneous Centre of Rotation (ICoR). 
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Note: If there is no rotation, then the ICoR can be thought of as 

being at infinity. 

(6.2) As an example, for a hoop rolling on a surface, the ICoR is 

the point of contact with the surface. (See Example 12.1, which 

considers a cylinder.) 

(6.3) The velocity of any point of a lamina is perpendicular to the 

line joining it to the ICoR. 

The ICoR can sometimes be determined if there are two points on 

the body whose directions of motion are known (for example, the 

ends of a sliding ladder). The ICoR is then obtained from the 

intersection of these lines. See Example (12.2). 

 

(7) Angular Momentum 

(7.1) In its most general form, the angular momentum of a system 

can be determined about a particular point (for example, 𝐿𝐺  if the 

point is the Centre of Mass, G). In the case of planar motion of a 

body with rotational symmetry about an axis through G that is 

perpendicular to the plane of motion (eg a rolling hoop), the 

angular momentum that will appear in an equation of motion is 

obtained by resolving 𝐿𝐺  in the direction of the axis (to give 

𝐿𝐺 . 𝑛), as will be seen below (where 𝑛 is a unit vector). Other 

components of 𝐿𝐺  will then be zero, due to the symmetry. 

(7.2) There are several points about which angular momentum 

could usefully be determined. 𝐿𝑂 is the simplest form, but 

generally isn’t that useful, except in deriving 𝐿𝐺 , which is the form 

that is most often used. 𝐿𝐶  (where C is the ICoR) is also 

sometimes used.  

(7.3) 𝐿𝑂 = ∑ 𝑚𝑖(𝑟𝑖 × 𝑣𝑖)𝑁
𝑖=1  is the total angular momentum (or 

moment of momentum) of a system of  𝑁 particles about (the 
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fixed Origin) O. Note that 𝐿𝑂 depends on the Origin chosen. 

However, a rigid body (or collection of particles) has an intrinsic 

angular momentum about G.  

 

(7.4) 𝐿𝐺 = ∑ 𝑚𝑖([𝑟 𝑖 − 𝑟 𝐺] × [𝑣𝑖 − 𝑣𝐺])𝑁
𝑖=1  

= ∑ 𝑚𝑖([𝑟 𝑖 − 𝑟 𝐺] × 𝑣𝑖)𝑁
𝑖=1   

−{∑ 𝑚𝑖([𝑟 𝑖 − 𝑟 𝐺]} × 𝑣𝐺
𝑁
𝑖=1   

= ∑ 𝑚𝑖𝑟 𝑖 × 𝑣𝑖
𝑁
𝑖=1 − 𝑟 𝐺 × ∑ 𝑚𝑖 × 𝑣𝑖

𝑁
𝑖=1  , as ∑ 𝑚𝑖[𝑟 𝑖 − 𝑟 𝐺]𝑁

𝑖=1 = 0 

= 𝐿𝑂 − 𝑟 𝐺 × 𝑃 , where  𝑃 = ∑ 𝑚𝑖𝑣𝑖 =𝑁
𝑖=1 𝑀𝑣𝐺  is the total linear  

momentum of the system (where M is the total mass) 

 Thus 𝐿𝐺 = 𝐿𝑂 − 𝑟 𝐺 × 𝑀𝑣𝐺  

 

(7.5) 𝐿𝐶 = ∑ 𝑚𝑖([𝑟 𝑖 − 𝑟𝐶] × [𝑣𝑖 − 𝑣𝐶])𝑁
𝑖=1  

= ∑ 𝑚𝑖([𝑟 𝑖 − 𝑟 𝐶] × 𝑣𝑖)𝑁
𝑖=1  , as  𝑣𝐶 = 0 

= ∑ 𝑚𝑖𝑟 𝑖 × 𝑣𝑖
𝑁
𝑖=1 − 𝑟 𝐶 × ∑ 𝑚𝑖 × 𝑣𝑖

𝑁
𝑖=1   

= 𝐿𝑂 − 𝑟 𝐶 × 𝑃 = 𝐿𝑂 − 𝑟 𝐶 × 𝑀𝑣𝐺   

 

(7.6) 𝐿𝐶  can also be determined from 𝐿𝐺: 

Result to prove: “The angular momentum of a body about the 

ICoR (C) equals the angular momentum about the Centre of Mass 

(G), plus the angular momentum of the total mass (assumed to be 

concentrated at G) about C.” 

In symbols, this is: 𝐿𝐶 = 𝐿𝐺 + (𝑟 𝐺 − 𝑟 𝐶) × 𝑀(𝑣𝐺 − 𝑣𝐶) 
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Proof 

RHS = 𝐿𝐺 + (𝑟 𝐺 − 𝑟 𝐶) × 𝑀𝑣𝐺  , as  𝑣𝐶 = 0 

= (𝐿𝑂 − 𝑟 𝐺 × 𝑀𝑣𝐺) + 𝑟 𝐺 × 𝑀𝑣𝐺 − 𝑟 𝐶 × 𝑀𝑣𝐺   

= 𝐿𝑂 − 𝑟 𝐶 × 𝑀𝑣𝐺   

= 𝐿𝐶  , as required 

 

(8) Torque 

K𝑂 = ∑ 𝑟 𝑖 × 𝐹 𝑖
𝑁
𝑖=1  is the total external torque about (the fixed 

Origin) O, where 𝐹 𝑖 is the external force acting on particle 𝑖  

The total external torque about G, K𝐺 = ∑ (𝑟 𝑖 − 𝑟 𝐺) × 𝐹 𝑖
𝑁
𝑖=1   

= K0 − 𝑟𝐺 × 𝐹 , where 𝐹 = ∑ 𝐹 𝑖
𝑁
𝑖=1  

Similarly  K𝐶 = K0 − 𝑟 𝐶 × 𝐹  

 

(9) Principle of Linear Momentum (Newton’s 2nd Law): 

𝐹 = 𝑀𝑟̈ 𝐺  , where 𝑟 𝐺  is the position vector of the centre of mass of 

a rigid body, 𝑀 is the total mass of the body, and 𝐹 is the net 

external force acting on the body 

 

(10) Principle of Angular Momentum 

(10.1) This can take two forms: 

(i) The 1st form is K𝑃 =
𝑑L𝑃

𝑑𝑡
 , where K𝑃 is the total torque about 

the point P, and L𝑃 is the angular momentum about P. 

There are several possibilities for P: 
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(a) The (fixed) Origin, O (or in fact any fixed point): This is the 

simplest to derive, but is not usually of much practical use.  

(b) The Centre of Mass, G: This is the form that is generally used. 

(c) The Instantaneous Centre of Rotation, C: This is sometimes 

used.  

(Note that C is instantaneously stationary relative to O, but not 

fixed for all times. The term ‘fixed’ implies stationary for all 

times.) 

 

(ii) The 2nd form, which will generally be used when solving 

problems is 

K𝑃 =
𝑑

𝑑𝑡
(𝐼𝑃𝜔) = 𝐼𝑃𝜔̇ , where  K𝑃 = |K𝑃|  

It is important to note that the axis about which the torque and 

angular momentum are calculated (giving rise to K𝑃 and 𝐼𝑃, 

respectively) is not necessarily the same as the actual axis of 

rotation (though it will be parallel to it).  

For example, if we are using K𝐺 =
𝑑

𝑑𝑡
(𝐼𝐺𝜔) = 𝐼𝐺𝜔̇, then the actual 

axis of rotation will be passing through C, which need not be the 

same as G. 
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(10.2) Derivation of the 1st form 

(10.2.1) For the Origin: 

Applying Newton’s 2nd Law to an individual particle 𝑖, 

𝐹 𝑖 = 𝑚𝑖𝑟 ̈ 𝑖    

(internal forces have been ignored, on the basis that they will 

cancel out when the whole system is considered) 

Then 
𝑑L0

𝑑𝑡
=

𝑑

𝑑𝑡
[∑ 𝑚𝑖(𝑟 𝑖 × 𝑣𝑖)𝑁

𝑖=1 ] 

= ∑ [𝑚𝑖(𝑟̇ 𝑖 × 𝑣𝑖) + 𝑚𝑖(𝑟 𝑖 × 𝑣̇𝑖)]𝑁
𝑖=1   

= ∑ 𝑚𝑖(𝑟 𝑖 × 𝑟̈ 𝑖)𝑁
𝑖=1  , as 𝑟̇ 𝑖 × 𝑣𝑖 = 𝑣𝑖 × 𝑣𝑖 = 0 

= ∑ 𝑟 𝑖 × 𝐹 𝑖 = K𝑂
𝑁
𝑖=1   

Thus  K𝑂 =
𝑑L0

𝑑𝑡
 , which is the Angular Momentum Principle 

applied to the Origin. However, it is not usually convenient to 

determine K𝑂 and L𝑂. Instead, corresponding results can be 

obtained for the Centre of Mass (G) and the ICoR (C): 

 

The main results for the Principle of Angular Momentum are: 

𝐾𝐺 = 𝐼𝐺𝜔̇   and 𝐾𝐶 = 𝐼𝐶𝜔̇  

As a general rule, calculation of  𝐼𝐶  is more complicated than for 𝐼𝐺  

(and typically may require calculation of  𝐼𝐺 , and application of the 

Parallel Axis theorem). However, as will be seen in the Examples, 

use of 𝐼𝐶  will generally enable N2L to be bypassed, so that less work 

is involved overall. 
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(10.2.2) For the Centre of Mass 

From (7.4), 𝐿𝐺 = 𝐿𝑂 − 𝑟 𝐺 × 𝑀𝑣𝐺   and from (8), K𝐺 = K0 − 𝑟 𝐺 × 𝐹  

Then K𝐺 =
𝑑L0

𝑑𝑡
− 𝑟 𝐺 × 𝐹 =

𝑑

𝑑𝑡
(𝐿𝐺 + 𝑟 𝐺 × 𝑀𝑣𝐺) − 𝑟 𝐺 × 𝐹 

=
𝑑

𝑑𝑡
𝐿𝐺 + 𝑟̇ 𝐺 × 𝑀𝑣𝐺 + 𝑟 𝐺 × 𝑀𝑣̇𝐺 − 𝑟 𝐺 × 𝐹  

=
𝑑

𝑑𝑡
𝐿𝐺 + 𝑣𝐺 × 𝑀𝑣𝐺 + 𝑟 𝐺 × 𝑀𝑟̈ 𝐺 − 𝑟 𝐺 × 𝐹  

=
𝑑

𝑑𝑡
𝐿𝐺  , as 𝑣𝐺 × 𝑣𝐺 = 0  and  𝐹 = 𝑀𝑟̈ 𝐺  (applying Newton’s 2nd 

Law to G) 

Thus  K𝐺 =
𝑑L𝐺

𝑑𝑡
 

 

(10.2.3) For the Instantaneous Centre of Rotation (ICoR): 

From (7.5),  𝐿𝐶 = 𝐿𝑂 − 𝑟 𝐶 × 𝑀𝑣𝐺   and from (8), K𝐶 = K0 − 𝑟 𝐶 × 𝐹 

Then K𝐶 =
𝑑L0

𝑑𝑡
− 𝑟 𝐶 × 𝐹 =

𝑑

𝑑𝑡
(𝐿𝐶 + 𝑟 𝐶 × 𝑀𝑣𝐺) − 𝑟 𝐶 × 𝐹 

=
𝑑

𝑑𝑡
𝐿𝐶 + 𝑟̇ 𝐶 × 𝑀𝑣𝐺 + 𝑟 𝐶 × 𝑀𝑣̇𝐺 − 𝑟 𝐶 × 𝐹  

=
𝑑

𝑑𝑡
𝐿𝐶 + 𝑟 𝐶 × (𝑀𝑟̈ 𝐺 − 𝐹)  , as 𝑟̇ 𝐶 = 0  

=
𝑑

𝑑𝑡
𝐿𝐶  ,  as 𝐹 = 𝑀𝑟̈ 𝐺  

Thus  K𝐶 =
𝑑

𝑑𝑡
𝐿𝐶  

 

(10.3) Derivation of the 2nd form for the Centre of Mass 

As mentioned earlier, for a rigid body with symmetry about the 

axis of rotation, the only non-zero component of 𝐿𝐺  (for example) 
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is the one in the direction of the axis: 𝐿𝐺 . 𝑛 (where 𝑛 is a unit 

vector). 

The following diagrams are for a solid cylinder rolling on a 

horizontal surface (moving from left to right). The Instantaneous 

Axis of Rotation will pass through the contact of the cylinder with 

the surface. 

 

Diagram 1  

 

 

Diagram 2  

 

From (7.4) again, 𝐿𝐺 = 𝐿𝑂 − 𝑟 𝐺 × 𝑀𝑣𝐺     

and 𝐿𝑂 = ∑ 𝑚𝑖(𝑟 𝑖 × 𝑣𝑖)𝑁
𝑖=1  
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So  𝐿𝐺 . 𝑛 = {∑ 𝑚𝑖(𝑟 𝑖 × 𝑣𝑖)𝑁
𝑖=1 . 𝑛} − (𝑟 𝐺 × 𝑀𝑣𝐺). 𝑛  

In Diagram 1, the axis of rotation 𝑛 (which is directed into the 

paper) is perpendicular to both 𝑟 𝐺  and 𝑣 𝐺 ,  

and so (𝑟 𝐺 × 𝑀𝑣 𝐺). 𝑛 = 0  (as 𝑟 𝐺 × 𝑣 𝐺  will be perpendicular to 

both 𝑟 𝐺  and 𝑣 𝐺). 

Thus  𝐿𝐺 . 𝑛 = ∑ 𝑚𝑖(𝑟 𝑖 × 𝑣𝑖)𝑁
𝑖=1 . 𝑛 

= ∑ 𝑚𝑖  𝑛 . (𝑟 𝑖 × 𝑣𝑖)𝑁
𝑖=1   

= ∑ 𝑚𝑖𝑣𝑖 . (𝑛 × 𝑟 𝑖)𝑁
𝑖=1   , by the cyclic interchange property of the 

scalar triple product). 

In Diagram 2 (from a different viewpoint), if the angular 

momentum is calculated with respect to an axis parallel to the 

axis of rotation (ie with direction 𝑛) and passing through O: 

𝑛 × 𝑟 𝑖 = |𝑟 𝑖|𝑠𝑖𝑛𝜃𝑘 , where 𝑘 goes into the page (in the direction 

of travel of the particle) (as 𝑛 is a unit vector), 

= 𝑑𝑖𝑘     

And 𝑣𝑖 = |𝑣𝑖|𝑘 = 𝜔𝑑𝑖𝑘 , where 𝜔 is the angular speed of the body 

Hence  𝐿𝐺 . 𝑛 = ∑ 𝑚𝑖
𝑁
𝑖=1 𝜔𝑑𝑖𝑘. (𝑑𝑖𝑘) 

= ∑ 𝑚𝑖
𝑁
𝑖=1 𝑑𝑖

2𝜔  

= 𝜔 ∑ 𝑚𝑖
𝑁
𝑖=1 𝑑𝑖

2  

= 𝐼𝐺𝜔 , where 𝐼𝐺  is the moment of inertia of the body about the 

centre of mass 

So (as the only non-zero component of 𝐿𝐺  is in the direction of 𝑛 , 

as discussed above),  𝐿𝐺 = 𝐼𝐺𝜔𝑛   and hence K𝐺 =
𝑑L𝐺

𝑑𝑡
  becomes  

K𝐺 = |K𝐺|𝑛 =
𝑑

𝑑𝑡
(𝐼𝐺𝜔𝑛)  
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so that  𝐾𝐺 =
𝑑

𝑑𝑡
(𝐼𝐺𝜔) = 𝐼𝐺𝜔̇ (where 𝐾𝐺 = |K𝐺|), as 𝑛 is fixed 

 

 

(10.4) 2nd form for C 

If instead the angular momentum is calculated with respect to the 

axis of rotation (passing through C, rather than G) then, in the 

same way, 𝐿𝐶 . 𝑛 = 𝐼𝐶𝜔. 

Then, with the torque also calculated with respect to the axis 

through C,  𝐾𝐶 =
𝑑

𝑑𝑡
(𝐼𝐶𝜔) = 𝐼𝐶𝜔̇ 

 

(11) Principle of Conservation of Energy 

𝑇 + 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

where  𝑇 =
1

2
𝑚𝑟̇2 +

1

2
𝐼𝐺𝜔2   and 𝑉 is the gravitational potential 

energy 

(
1

2
𝑚𝑟̇2 is the kinetic energy of translation, and 

1

2
𝐼𝐺𝜔2 is the kinetic 

energy of rotation; with 𝑟̇ being the speed of the centre of mass) 

 

(12) Examples 

(12.1) A solid cylinder of mass M and radius 𝑎 rolls down an 

inclined plane. Show that the acceleration of the centre of mass of 

the cylinder down the slope is 
2

3
𝑔𝑠𝑖𝑛𝛼. 
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(See “Rolling Wheel – Friction” for a justification of the direction 

of the frictional force 𝑓.) 

Approach 1 (Centre of Mass) 

Applying N2L to the centre of mass (G): 𝑀𝑔𝑠𝑖𝑛𝛼 − 𝑓 = 𝑀𝑥̈𝐺  (*) 

Then, by the Angular Momentum principle, applied to G: 

𝐾𝐺 =
𝑑

𝑑𝑡
(𝐼𝐺𝜃̇), where 𝜃 is the angle turned by the cylinder. 

[The angular velocity 𝜃̇ can be measured as the angular rate of 

turning of any line AB in the plane. Here A is G, and B is on the rim 

of the cylinder.] 

And 𝐾𝐺 = 𝑎𝑓  and 𝐼𝐺 =
1

2
𝑀𝑎2, 

so that    𝑎𝑓 =
1

2
𝑀𝑎2𝜃̈, or 𝑓 =

1

2
𝑀𝑎𝜃̈   

Also, as the cylinder is rolling,  𝑥𝐺 = 𝑎𝜃 (ie the distance covered 

on the sloping surface, and by G, is equal to the arc length 

corresponding to the angle 𝜃). 

Hence,  𝑥̈𝐺 = 𝑎𝜃̈, and so 𝑓 =
1

2
𝑀𝑥̈𝐺  

And substituting into (*) then gives  

𝑀𝑔𝑠𝑖𝑛𝛼 −
1

2
𝑀𝑥̈𝐺 = 𝑀𝑥̈𝐺 , 



  fmng.uk 

16 
 

so that   
3

2
𝑥̈𝐺 = 𝑔𝑠𝑖𝑛𝛼, and  𝑥̈𝐺 =

2

3
𝑔𝑠𝑖𝑛𝛼, as required. 

 

Approach 2 (Instantaneous Centre of Rotation) 

The Instantaneous Centre of Rotation will be a point of contact of 

the cylinder with the surface. 

The angular velocity 𝜃̇ will be the same as in Approach 1. 

Applying the Angular Momentum principle to C instead: 

𝐾𝐶 = 𝐼𝐶𝜃̈, with 𝐾𝐶 = 𝑎𝑀𝑔𝑠𝑖𝑛𝛼   

By the Parallel Axis theorem (see “Moments of Inertia”),  

𝐼𝐶 = 𝐼𝐺 + 𝑀𝑎2 =
1

2
𝑀𝑎2 + 𝑀𝑎2 =

3

2
𝑀𝑎2  

and so  𝑎𝑀𝑔𝑠𝑖𝑛𝛼 =
3

2
𝑀𝑎2𝜃̈ =

3

2
𝑀𝑎2 𝑥̈𝐺

𝑎
 , 

giving   𝑥̈𝐺 =
2

3
𝑔𝑠𝑖𝑛𝛼  again. 

[Notice that we did not need to use N2L for this approach.]  

 

Approach 3  (Conservation of Energy) 

1

2
𝑀𝑥̇𝐺

2 +
1

2
𝐼𝐺𝜔2 − 𝑀𝑔𝑥𝑠𝑖𝑛𝛼 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡   (1) 

(G is a constant height above the point of contact of the cylinder 

with the surface, and 𝑥𝑠𝑖𝑛𝛼 measures the drop in height of the 

point of contact) 

and 𝐼𝐺 =
1

2
𝑀𝑎2;  

also 𝑥𝐺 = 𝑎𝜃, so that 𝜔 = 𝜃̇ =
𝑥̇𝐺

𝑎
 , 

and hence, from (1), 
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2𝑥̇𝐺
2 + 𝑎2(

𝑥̇𝐺

𝑎
)2 − 4𝑔𝑥𝐺𝑠𝑖𝑛𝛼 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡    

or  3𝑥̇𝐺
2 − 4𝑔𝑥𝐺𝑠𝑖𝑛𝛼 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then, differentiating wrt 𝑡, 

6𝑥̇𝐺𝑥̈𝐺 − 4𝑔𝑥̇𝐺𝑠𝑖𝑛𝛼 = 0,  

so that either  𝑥̇𝐺 = 0 (which can be rejected, as the cylinder is not 

stationary) or 𝑥̈𝐺 =
2

3
𝑔𝑠𝑖𝑛𝛼 

[Once again, N2L is avoided.] 

 

(12.2) A ladder sliding down a wall 

 

where the ladder is of length 2𝑎, 𝑥 = 𝑂𝐵  and 𝑦 = 𝑂𝐴 

In the case where both surfaces are smooth (so that 𝜇 = 0), find a 

differential equation in 𝜃, assuming that the ladder stays in 

contact with the two surfaces. 
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Approach 1 (Centre of Mass) 

Applying N2L vertically to G: 𝑅2 − 𝑀𝑔 = 𝑀 (
𝑦

2
) 
̈

   (1) 

Applying N2L horizontally to G: 𝑅1 = 𝑀 (
𝑥

2
) 
̈

  (2) 

Also, 𝑥 = 2𝑎𝑐𝑜𝑠𝜃  and  𝑦 = 2𝑎𝑠𝑖𝑛𝜃, 

so that  𝑥̇ = −2𝑎𝑠𝑖𝑛𝜃. 𝜃̇  and   𝑦̇ = 2𝑎𝑐𝑜𝑠𝜃. 𝜃̇, 

and hence 𝑥̈ = (−2𝑎𝑐𝑜𝑠𝜃. 𝜃̇)𝜃̇ + (−2𝑎𝑠𝑖𝑛𝜃)𝜃̈ 

and  𝑦̈ = (−2𝑎𝑠𝑖𝑛𝜃. 𝜃̇)𝜃̇ + (2𝑎𝑐𝑜𝑠𝜃)𝜃̈ 

Then from (1),  𝑅2 = 𝑀𝑎{−𝑠𝑖𝑛𝜃. 𝜃̇2 + 𝑐𝑜𝑠𝜃. 𝜃̈} − 𝑀𝑔,   (1′) 

and from (2), 𝑅1 = 𝑀𝑎{−𝑐𝑜𝑠𝜃. 𝜃̇2 − 𝑠𝑖𝑛𝜃. 𝜃̈}  (2′) 

Applying the Angular Momentum principle to G: 

𝐾𝐺 = 𝐼𝐺𝜃̈, with 𝐾𝐺 = 𝑅1𝑎𝑠𝑖𝑛𝜃 − 𝑅2𝑎𝑐𝑜𝑠𝜃  (in direction of  

increasing 𝜃) 

and 𝐼𝐺 =
1

3
𝑀𝑎2, so that  𝑅1𝑎𝑠𝑖𝑛𝜃 − 𝑅2𝑎𝑐𝑜𝑠𝜃  =

1

3
𝑀𝑎𝜃̈  (3) 

Then, substituting into (3) for 𝑅2 and 𝑅1 from (1′) and (2′), 

𝑀𝑎{−𝑐𝑜𝑠𝜃. 𝜃̇2 − 𝑠𝑖𝑛𝜃. 𝜃̈}𝑠𝑖𝑛𝜃   

−{𝑀𝑎(−𝑠𝑖𝑛𝜃. 𝜃̇2 + 𝑐𝑜𝑠𝜃. 𝜃̈) − 𝑀𝑔}𝑐𝑜𝑠𝜃 =
1

3
𝑀𝑎𝜃̈  

so 𝜃̈ (−𝑠𝑖𝑛2𝜃 − 𝑐𝑜𝑠2𝜃 −
1

3
) + 𝜃̇2(−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃) =

𝑔𝑐𝑜𝑠𝜃

𝑎
  

and hence   𝜃̈ = −
3𝑔𝑐𝑜𝑠𝜃

4𝑎
 

[This can be solved by the standard method for a non-

homogenous equation, with 𝜃̇ = 0 and  𝜃 = 𝛼 when 𝑡 = 0.] 
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Approach 2 (Instantaneous Centre of Rotation) 

As A is constrained to move vertically, C will lie on a line 

perpendicular to OA (so that A is instantaneously moving in a 

circle centred on C). Similarly, C will lie on a line perpendicular to 

OB.  

Applying the Angular Momentum principle to C: 

𝐾𝐶 = 𝐼𝐶𝜃̈, with 𝐾𝐶 = −𝑀𝑔𝑎𝑐𝑜𝑠𝜃 (in direction of increasing 𝜃) 

[As discussed earlier, the angular velocity 𝜃̇ (and hence 
𝑑

𝑑𝑡
𝜃̇) is 

the same function of 𝑡, whether we are using  𝐾𝐶 = 𝐼𝐶𝜃̈ or  

𝐾𝐺 = 𝐼𝐺𝜃̈] 

and 𝐼𝐶 = 𝐼𝐺 + 𝑀(𝐺𝐶)2,  by the Parallel Axis Theorem, 

where  (𝐺𝐶)2 = (
𝑥

2
)2 + (

𝑦

2
)2 

Hence −𝑀𝑔𝑎𝑐𝑜𝑠𝜃 = (
1

3
𝑀𝑎2 +

𝑀

4
(𝑥2 + 𝑦2))𝜃̈ 

= (
𝑎2

3
+

1

4
(4𝑎2𝑐𝑜𝑠2𝜃 + 4𝑎2𝑠𝑖𝑛2𝜃))𝑀𝜃̈  

=
4

3
𝑀𝑎2𝜃̈  

and so  𝜃̈ =
−3𝑔𝑐𝑜𝑠𝜃

4𝑎
  again 

[Note how, once again, N2L did not need to be used. In this case, a 

lot of extra work has been avoided.] 

Note: B and A are both performing instantaneous circular motion 

about C, and so 𝜔 𝑜𝑟 𝜃̇ =
−𝑥̇

𝐵𝐶
 (as −𝑥̇ is the speed of B in the 

direction of increasing 𝜃) and also 𝜃̇ =
𝑦̇

𝐴𝐶
 . 

And hence  𝜃̇ =
−𝑥̇

2𝑎𝑠𝑖𝑛𝜃
 , so that 𝑥̇ = −2𝑎𝑠𝑖𝑛𝜃. 𝜃̇ , which agrees with 

the working in Approach 1. 
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Also 𝜃̇ =
𝑦̇

2𝑎𝑐𝑜𝑠𝜃
 , so that   𝑦̇ = 2𝑎𝑐𝑜𝑠𝜃. 𝜃̇ 

 

Approach 3  (Conservation of Energy) 

1

2
𝑀𝑟̇𝐺

2 +
1

2
𝐼𝐺𝜔2 + 𝑀𝑔𝑦𝐺 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡   (1) 

where 𝑟̇𝐺
2 = 𝑥̇𝐺

2 + 𝑦̇𝐺
2, 

and 𝑥𝐺 =
𝑥

2
= 𝑎𝑐𝑜𝑠𝜃  and  𝑦𝐺 =

𝑦

2
= 𝑎𝑠𝑖𝑛𝜃, 

so that  𝑥̇𝐺 = −𝑎𝑠𝑖𝑛𝜃. 𝜃̇  and   𝑦̇𝐺 = 𝑎𝑐𝑜𝑠𝜃. 𝜃̇, 

and hence  𝑟̇𝐺
2 = 𝑎2(𝜃̇)2 

And 𝐼𝐺 =
1

3
𝑀𝑎2 

Then, from (1),  

𝑎2(𝜃̇)2 +
1

3
𝑎2(𝜃̇)2 + 𝑔(2𝑎𝑠𝑖𝑛𝜃) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

or  
4

3
𝑎(𝜃̇)2 + 2𝑔𝑠𝑖𝑛𝜃 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Then, differentiating wrt 𝑡, 

8

3
𝑎𝜃̇𝜃̈ + 2𝑔𝑐𝑜𝑠𝜃. 𝜃̇ = 0, 

so that either 𝜃̇ = 0  or  𝜃̈ =
−3𝑔𝑐𝑜𝑠𝜃

4𝑎
 , as before, 

with the solution 𝜃̇ = 0  being only valid at the start of the motion 

(as the ladder starts from rest). 

 

 

 


