Probability Generating Function Q2 [Problem/H] (12/6/21)

A hen lays *N* eggs, where $N \sim P_o(\lambda)$, and each egg has probability *p* of hatching. Using any results about probability generating functions , show that the total number of eggs that hatch $\sim P_o(\lambda p)$

['Poisson hen']

A hen lays *N* eggs, where $N \sim P_o(\lambda)$, and each egg has probability *p* of hatching. Using any results about probability generating functions , show that the total number of eggs that hatch $\sim P_o(\lambda p)$

['Poisson hen']

Solution

Let the total number of eggs that hatch be $Z = X_1 + \dots + X_N$, where the $X_i \sim \text{Bernouilli}(p)$. Then $G_Z(s) = G_N(G_X(s))$ with $G_N(s) = e^{\lambda(s-1)}$ and $G_X(s) = (1-p) + ps$, so that $G_Z(s) = e^{\lambda(-p+ps)} = e^{\lambda p(s-1)}$ and hence $Z \sim P_o(\lambda p)$, as required.