Probability Generating Function Q2 [Problem/H]
 (12/6/21)

A hen lays N eggs, where $N \sim P_{o}(\lambda)$, and each egg has probability p of hatching. Using any results about probability generating functions, show that the total number of eggs that hatch $\sim P_{o}(\lambda p)$ ['Poisson hen']

A hen lays N eggs, where $N \sim P_{o}(\lambda)$, and each egg has probability p of hatching. Using any results about probability generating functions, show that the total number of eggs that hatch $\sim P_{o}(\lambda p)$ ['Poisson hen']

Solution

Let the total number of eggs that hatch be $Z=X_{1}+\cdots+X_{N}$, where the $X_{i} \sim \operatorname{Bernouilli}(p)$.
Then $G_{Z}(s)=G_{N}\left(G_{X}(s)\right)$
with $G_{N}(s)=e^{\lambda(s-1)}$ and $G_{X}(s)=(1-p)+p s$,
so that $G_{Z}(s)=e^{\lambda(-p+p s)}=e^{\lambda p(s-1)}$
and hence $Z \sim P_{o}(\lambda p)$, as required.

