Q1 [Problem/H]

Given that $X_{1}, X_{2}, \ldots, X_{N} \& N$ are independent random variables, where the X_{i} are all distributed as X, and that
$S_{N}=X_{1}+X_{2}+\cdots+X_{N}$,
prove that $\operatorname{Var}\left(S_{N}\right)=E(N) \operatorname{Var}(X)+\operatorname{Var}(N)[E(X)]^{2}$
The following results may be used:
(A) $E(X)=G_{X}^{\prime}(1)$
(B) $\operatorname{Var} X=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left[G_{X}^{\prime}(1)\right]^{2}$
(C) $G_{S_{N}}(s)=G_{N}\left(G_{X}(s)\right)$
(D) $E\left(S_{N}\right)=E(N) E(X)$

Q2 [Problem/H]

A hen lays N eggs, where $N \sim P_{o}(\lambda)$, and each egg has probability p of hatching. Using any results about probability generating functions, show that the total number of eggs that hatch $\sim P_{o}(\lambda p)$
['Poisson hen']

