Oscillations - Q4 [14 marks] (20/6/21)

Exam Boards

OCR : Mechanics (Year 2)
MEI: Mechanics b
AQA: Mechanics (Year 1)
Edx: Mechanics 1 (Year 2)

Two light springs are attached to a sphere S of mass 2 kg that rests on a smooth horizontal surface. The other ends of the springs are attached to fixed points A and B, 3 m apart (the sphere has negligible dimensions). Spring AS has stiffness $20 \mathrm{Nm}^{-1}$ and spring SB has stiffness $30 \mathrm{Nm}^{-1}$. Both springs have a natural length of 1 m . The sphere oscillates along the line $A B$ and has a maximum speed of $2 m s^{-1}$.
(i) If x is the distance of the sphere from A , show that
$\frac{d^{2} x}{d t^{2}}=40-25 x \quad[4 \mathrm{marks}]$
(ii) How far is the sphere from A when it is moving at its maximum speed? [2 marks]
(iii) What is the closest that the sphere gets to A? [8 marks]

Solution

(i) By Hooke's law, and N2L: $30([3-x]-1)-20(x-1)=2 \frac{d^{2} x}{d t^{2}}$ [Hooke's law: 2 marks; N2L: 1 mark] so that $\frac{d^{2} x}{d t^{2}}=\frac{1}{2}(80-50 x)=40-25 x[1$ mark]
(ii) The maximum speed occurs when $\frac{d^{2} x}{d t^{2}}=0$ [1 mark] so that $40-25 x=0$ and $x=\frac{8}{5}=1.6 m$ [1 mark]
(iii) When the sphere has its maximum speed of $2 \mathrm{~ms}^{-1}$,
$\mathrm{KE}=\frac{1}{2}(2) 2^{2}=4 J[1$ mark]
and its elastic $\mathrm{PE}=\frac{1}{2}(20)(1.6-1)^{2}+\frac{1}{2}(30)([3-1.6]-1)^{2}$
$=3.6+2.4=6 \mathrm{~J}$ [2 marks]
At its closest approach to $\mathrm{A}, K E=0$
and $\mathrm{EPE}=\frac{1}{2}(20)(x-1)^{2}+\frac{1}{2}(30)([3-x]-1)^{2} \quad[2$ marks $]$
$=10\left(x^{2}-2 x+1\right)+15\left(4-4 x+x^{2}\right)$
$=25 x^{2}-80 x+70 J$ [1 mark]
By conservation of energy, $25 x^{2}-80 x+70=4+6$
$\Rightarrow 5 x^{2}-16 x+12=0$ [1 mark]
$\Rightarrow x=\frac{16 \pm \sqrt{256-240}}{10}=1.6 \pm 0.4$
[1.6 is the centre of the oscillations, and agrees with (ii)]
So the sphere's closest distance is $1.2 m$ [1 mark]

