Oscillations - Q3 [Problem/H](16/6/21)

A 0.2 kg mass is held between two elastic strings, as shown in the diagram. The upper string has original length 8 m and modulus of elasticity 2 N , and is initially extended by 4 m . The lower string has original length 6 m and modulus of elasticity 1 N , and is initially extended by 2 m . When the mass is released, determine its subsequent motion (assume $g=10$, and ignore any resistance to motion).

Solution

Let x be the displacement of the mass above its initial position.
By N2L, (0.2) $\ddot{x}=\frac{4-x}{8}(2)-\frac{2+x}{6}(1)-(0.2)(10)$
so that $\ddot{x}=5\left(1-\frac{1}{3}-2\right)-5 x\left(\frac{1}{4}+\frac{1}{6}\right)=-\frac{20}{3}-\frac{25 x}{12}$

Method 1

Writing $\ddot{x}+\frac{25 x}{12}=-\frac{20}{3}$ gives a complementary function of
$x=A \cos \left(\frac{5}{\sqrt{12}} t+\alpha\right)$
and a trial function of $x=C$ for the particular integral gives
$\frac{25 C}{12}=-\frac{20}{3}$, so that $C=-\frac{16}{5}$
and the general solution is $x=A \cos \left(\frac{5}{\sqrt{12}} t+\alpha\right)-\frac{16}{5}$
so that $\dot{x}=-\frac{5}{\sqrt{12}} A \sin \left(\frac{5}{\sqrt{12}} t+\alpha\right)$
Then $t=0, \dot{x}=0 \Rightarrow \alpha=0$
and $t=0, x=0 \Rightarrow 0=A-\frac{16}{5}$
so that the particular solution is $x=\frac{16}{5}\left[\cos \left(\frac{5}{\sqrt{12}} t\right)-1\right]$
This is SHM of amplitude $\frac{16}{5}$ about $x=-\frac{16}{5}$
The period of oscillations is given by $\frac{5}{\sqrt{12}} T=2 \pi$,
and is $T=\frac{2 \pi \sqrt{12}}{5}=4.35 \mathrm{~s}(3 \mathrm{sf})$
Thus the mass falls when released, and rises again to its initial position (as would be predicted by conservation of energy).

Method 2

$\ddot{x}=-\frac{20}{3}-\frac{25 x}{12}$
Let $-\frac{20}{3}-\frac{25 x}{12}=-\frac{25 y}{12}$, so that $y=x+\frac{20}{3}\left(\frac{12}{25}\right)=x+\frac{16}{5}$
Then $\ddot{y}=\ddot{x}=-\frac{25 y}{12}$
which gives SHM of amplitude $\frac{16}{5}$ about $y=0$; ie $x=-\frac{16}{5}$

