Oscillations - Q2 [Problem/H](16/6/21)

A flexible bar is embedded horizontally in a wall. A particle rests on the free end of the bar, and the bar (with the particle) is pulled down 2 cm below the horizontal, and then released. Given that the bar and particle start to perform simple harmonic motion about the horizontal position, with 5 cycles per second, how long is it before the particle loses contact with the bar, and what speed does it have at that point? [Note: The particle will not be in contact with the bar long enough to complete a cycle of the simple harmonic motion.]

Solution

Let x be the displacement of the bar from the horizontal, where upwards is the positive direction.

Then (converting to S.I. units), $x=0.02 \sin (\omega t)$, if (for convenience) we measure time from when $x=0$.

Then, as 1 cycle (ie 2π radians) takes $\frac{1}{5}$ sec.,
$\omega\left(\frac{1}{5}\right)=2 \pi$, so that $\omega=10 \pi$
and $\ddot{x}=-\omega^{2} x$
The particle is subject to gravity and a reaction force $R(x)$ from the bar, so that
$R(x)-m g=m \ddot{x}$, whilst the particle is in contact with the bar (where m is the mass of the particle)

The particle loses contact with the bar when $R(x)=0$;
ie when $-m g=m \ddot{x}$ and $\ddot{x}=-g$
As $\ddot{x}=-\omega^{2} x$, this occurs when $-\omega^{2} x=-g$; ie $x=\frac{g}{\omega^{2}}$
(note that this is where $x>0$; ie above the horizontal).
The bar and particle take a quarter of a cycle, ie $\frac{1}{20}$ sec., to travel from the point of release to the horizontal.

If contact is lost at T secs after the horizontal has been reached, $\frac{g}{\omega^{2}}=x=0.02 \sin (\omega T)$, where $\omega=10 \pi$.

Then $T=\frac{1}{10 \pi} \sin ^{-1}\left(\frac{9.8}{100 \pi^{2}(0.02)}\right)=0.016537$
and hence the required time from release is $\frac{1}{20}+0.016537=$ $0.066537=0.0665 \mathrm{~s}(3 \mathrm{sf})$

The speed of the particle is $\dot{x}(T)=0.02(10 \pi) \cos (10 \pi T)$
$=0.54542 \mathrm{~ms}^{-1}$ or $54.5 \mathrm{cms}^{-1}(3 \mathrm{sf})$

