Oscillations - Q1 [Problem/H](16/6/21)

A lift has an elastic string suspended from its ceiling, with a mass of 10 grams at the end of the string. The string has natural length 80 cm , and modulus of elasticity 20 N . Initially, when the lift is stationary, the mass is hanging in equilibrium. The lift then starts to ascend with an acceleration of $0.2 \mathrm{~ms}^{-2}$. Show that the extension of the string after t secs is $0.4-0.008 \cos (50 t) \mathrm{cm}$.
[Assume that $g=9.8 \mathrm{~ms}^{-2}$]

Solution

Let x be the distance of the mass below the level of the ceiling of the lift when it is stationary, measured relative to the lift's surroundings.

Then $x=0.8+e-y$,
where e is the extension of the string and y is the distance moved (upwards) by the lift,
so that $\ddot{x}=\ddot{e}-\ddot{y}=\ddot{e}-0.2$
Considering the forces on the mass,
$0.01 g-T=0.01 \ddot{x}$,
where T is the tension in the string, and by Hooke's law, $T=\frac{20}{0.8} e$

So $0.01 g-\frac{20}{0.8} e=0.01 \ddot{x}=0.01(\ddot{e}-0.2)$,
and hence $g-2500 e=\ddot{e}-0.2$,
or $\ddot{e}+2500 e=9.8+0.2=10$
To solve the differential equation:
the auxiliary equation is $\lambda^{2}+2500=0$,
with roots $\lambda= \pm 50 i$,
so that the complementary function is $A e^{50 i t}+B e^{-50 i t}$
or $(A+B) \cos 50 t+(A-B) i \sin 50 t$
or $C \cos 50 t+D \sin 50 t$,
which can be written as $E \cos (50 t+\alpha)$
The particular integral of the differential equation is a constant F
(as the RHS of $\left(^{*}\right)$ is a constant),
such that $2500 F=10$, so that $F=0.004$
Thus the general solution of (*) is:
$e=E \cos (50 t+\alpha)+0.004\left(^{* *}\right)$
and $\dot{e}=-50 E \sin (50 t+\alpha)$
When $t=0$, and the mass is hanging in equilibrium,
$0.01 g-T=0$ and $T=\frac{20}{0.8} e$,
so that $0.01 g=\frac{20}{0.8} e$ and $e=\frac{49}{12500}$
Also, at $t=0, \dot{e}=0$, so that $\alpha=0$
Thus, from $\left({ }^{* *}\right), \frac{49}{12500}=E+0.004$,
and $E=-0.00008$,
so that $e=0.004-0.00008 \cos (50 t) m$
or $0.4-0.008 \cos (50 t) \mathrm{cm}$

