Oblique impact of ball with plane - Exercises

(10 pages; 5/5/25)
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[Note: The following theory wouldn’t apply to a particle, as it would
not be capable of compression, and so Newton’s law of restitution

wouldn’t apply.]

Referring to the diagram above, find an expression for tang in terms

of tan@ and e.
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[Referring to the diagram above, find an expression for tang in
terms of tan@ and e.]

Solution
vcosp = ucosf (A) and vsing = esinf (B)

Dividing (B) by (A), etanf = tang
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Find an expression for v in terms of u, 0 and e
(i) involving cos@ and sin6

(i) involving tan6
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[Find an expression for v in terms of u, 8 and e

(i) involving cos@ and sin6
(ii) involving tan®]
Solution

(i) (A)% + (B)? = v2(cos?¢p + sin?¢) = u?(cos?6 + e*sin?0),

so that v = uvcos?60 + e?sin?0

.. ; 1+e?tan?0
(i) v = uvcos?0 + e?sin?0 = u /—2
sec<0
1+e?tan?6
= u |—-
1+tan?6

When 8 = 60°and e = 13, find ¢, and v (in terms of u).
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[When 8 = 60°and e = find ¢, and v (in terms of u).]

3 Vs
Solution
o _ L
When 8 = 60°and e =5

tang = etanb =\/i§.\/§ = 1,sothat ¢ = 45°

And v = u 1+e?tan?6 U 1+tan?¢ u 1+1 _ u
o 1+tan20 1+tan20 143 2

What relation must hold between tan8 and e, in order for the
outgoing path to be perpendicular to the incoming path?
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[What relation must hold between tan6 and e, in order for the

outgoing path to be perpendicular to the incoming path?]

If0 + ¢ =90° tang = etanf and tang = tan (90° — 0)

1
= cotld = —
tan@

1 1 1
Hence etanf = ——, so that tan’0 = - and tanf = —
tan e Ve

For the same situation, express v in terms of u and e.
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[For the same situation, express v in terms of u and e. |

Solution

1

1+e2tan?6 1+e?(3) e+e?

— =y |—%=u = uve
1+tan<0 1+E e+1

For the same situation, what is the smallest possible value for 67



fmng.uk
[For the same situation, what is the smallest possible value for 67 ]

Solution

tan6, and hence 8, is minimised when e is maximised; ie whene = 1
and tanf = 1, so that 8 = 45°

Vector approach, for the general case where the plane
(represented by a line) is at an angle to the coordinate axes.

Suppose that the line has direction vector (g), and that the incoming

velocity is (4) ms™!, withe = %

1

The incoming velocity can be broken down into a vector parallel to
the line, and a vector perpendicular to it.

By projecting the incoming velocity onto the line, find the vector
parallel to the line.
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By projecting the incoming velocity onto the line, find the vector
parallel to the line.

Solution

The magnitude of the incoming velocity parallel to the line is:
W) H6) 6 Q6 2)
) [/ T

_ 13 (2 . 2y, o
= 39 (5) , hoting that (5) is pointing in the right direction.

-5
diagram, but would be opposite to the direction of motion of the

ball.]

, and so the required vector is

[ The direction vector ( ) would also represent the line in the

Find the vector perpendicular to the line.
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Find the vector perpendicular to the line.

Solution
A vector perpendicular to the line, in the direction of the ball’s

D)

motion, is (_52), and so the required vector is T (_52) =
5 ()

Find the outgoing velocity (in vector form).
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Find the outgoing velocity (in vector form).

Solution

Outgoing velocity is g (g) _ eg (_52)

=£ (é) _%'g (_52)

= SICY - (45

e
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