Normal Q2 [Problem/Y2/H] (10/6/21)

Show that 1 standard deviation to either side of the mean of the Normal distribution occurs at the point of inflexion of the Normal curve.

Show that 1 standard deviation to either side of the mean of the Normal distribution occurs at the point of inflexion of the Normal curve.

Solution

Considering $N(0,1), \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$
$\phi^{\prime}(x)=\frac{-x}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$
and $\phi^{\prime \prime}(x)=\frac{-1}{\sqrt{2 \pi}}\left\{e^{-\frac{1}{2} x^{2}}+x(-x) e^{-\frac{1}{2} x^{2}}\right\}$
A point of inflexion is a turning point of the gradient, for which a necessary condition is that the gradient is stationary; ie
$\frac{d}{d x} \phi^{\prime}(x)=0$ or $\phi^{\prime \prime}(x)=0$
[Technically, to confirm that it is a turning point of the gradient, we should check that $\frac{d^{2}}{d x^{2}} \phi^{\prime}(x) \neq 0$; ie $\phi^{\prime \prime \prime}(x) \neq 0$ (this is a sufficient condition; a necessary condition is that the first nonzero derivative of $\phi^{\prime}(x)$ is an even derivative). However, we can see from the curve that there is a point of inflexion.]
$\phi^{\prime \prime}(x)=0 \Rightarrow 1-x^{2}=0 \Rightarrow x= \pm 1$, as required.

