Normal Distribution - Q1[12 marks] (10/6/21)

Exam Boards

OCR : AL (Year 2)
MEI: AL (Year 2)
AQA: AL (Year 2)
Edx: AL (Year 2)

Suppose that the heights (in cm) of adult males in the UK are distributed $N(174,49)$.
(i) Assuming that there are 2.5 cm to an inch, what proportion of adult males in the UK are over 6 ft ? Give your answer to 1 dp . [3 marks]
(ii) In another country, the heights of adult males are distributed Normally, such that 10% are over 6 ft and 5\% are under 5 ft . Find the mean and variance of the distribution. Give your answers to 1dp. [9 marks]

Suppose that the heights (in cm) of adult males in the UK are distributed $N(174,49)$.
(i) Assuming that there are 2.5 cm to an inch, what proportion of adult males in the UK are over 6 ft ? Give your answer to 1 dp .
[3 marks]
(ii) In another country, the heights of adult males are distributed Normally, such that 10% are over 6 ft and 5\% are under 5 ft . Find the mean and variance of the distribution. Give your answers to 1dp. [9 marks]

Solution

(i) $6 \mathrm{ft}=6 \times 12 \times \frac{5}{2}=180 \mathrm{~cm}$

If $X \sim N\left(174,7^{2}\right)$, then $\operatorname{Prob}(\mathrm{X}>180)=\operatorname{Prob}\left(\frac{\mathrm{X}-174}{7}>\frac{180-174}{7}\right)$
[1 mark]
$=\operatorname{Prob}(\mathrm{Z}>0.857)=1-0.8042=0.1958$, from tables.
So 19.6% of adult males in the UK are over $6 \mathrm{ft}(1 \mathrm{dp})$. [2 marks]
(ii) $5 \mathrm{ft}=5 \times 12 \times \frac{5}{2}=150 \mathrm{~cm}$

Let height, $Y \sim N\left(\mu, \sigma^{2}\right)$. [1 mark]
Then $\operatorname{Prob}\left(\mathrm{Z}>\frac{180-\mu}{\sigma}\right)=0.1$ [1 mark]
and $\operatorname{Prob}\left(\mathrm{Z}<\frac{150-\mu}{\sigma}\right)=0.05$, [1 mark]
so that , from tables, $\frac{180-\mu}{\sigma}=1.282$ [1 mark]
and $\frac{150-\mu}{\sigma}=-1.645$ [1 mark]
Hence $\frac{180-\mu}{1.282}=\frac{150-\mu}{-1.645} \Rightarrow-296.1+1.645 \mu=192.3-1.282 \mu$
$\Rightarrow \mu=\frac{192.3+296.1}{1.645+1.282}=166.86$ [2 marks]
and $\sigma=\frac{180-166.86}{1.282}=10.2496$ and $\sigma^{2}=105.054$ [2 marks]
Thus the mean is 166.9 cm and the variance is $105.1 \mathrm{~cm}^{2}(1 \mathrm{dp})$.

