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Moments of Inertia (7 pages; 1/8/23) 

 

(1) Suppose that an object rotates about an axis 𝐴𝐵 with angular 

velocity 𝜃̇.  

Considering the object to be made up of particles, suppose that 

particle 𝑖 (with mass 𝑚𝑖) is at a perpendicular distance 𝑝𝑖  from 

𝐴𝐵. Then the total kinetic energy of the particles is   

∑
1

2𝑖 𝑚𝑖(𝜃̇𝑝𝑖)2 =
1

2
𝐼𝐴𝐵(𝜃̇)

2
  (as 𝜃̇ is the same for all particles) 

where 𝐼𝐴𝐵 = ∑ 𝑚𝑖(𝑝𝑖)2
𝑖   is defined to be the moment of inertia of 

the object about 𝐴𝐵. 

Thus, by comparison with (linear) kinetic energy, the moment of 

inertia takes the place of mass, whilst the angular velocity takes 

the place of (linear) velocity.  Just as mass measures the 

resistance of an object to linear acceleration, the moment of 

inertia measures the resistance to rotational acceleration about a 

particular axis. 
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(2) Moments of inertia can be determined by integration (see 

proofs below). 

Commonly used moments of inertia  are shown below.  

[𝐺 is the centre of mass; the objects are uniform] 

 

 axis  
rod of length 2𝑎  through G, perpendicular to 

the rod 

1

3
𝑀𝑎2  

rectangular lamina of sides 
2𝑎 and 2𝑏 

in plane of lamina, bisecting 
the side of length 2𝑎 

1

3
𝑀𝑎2  

circular hoop of radius 𝑎 
 

axis of symmetry 𝑀𝑎2  

circular disc of radius 𝑎 axis of symmetry 1

2
𝑀𝑎2  

Hollow cone (with no base) 
of radius 𝑎 

axis of the cone 1

2
𝑀𝑎2  

 
spherical shell of radius 𝑎 any axis through G 2

3
𝑀𝑎2  

 
solid sphere of radius 𝑎 any axis through G 

 

2

5
𝑀𝑎2  

 

(3) Proofs 

(i) Uniform rod of length 2𝑎, about an axis through G, 

perpendicular to the rod 

𝐼 = ∫ 𝑥2(𝜌𝑑𝑥)
𝑎

−𝑎
 ,  

where  𝜌 =
𝑀

2𝑎
 is the density of the rod per unit length 

So 𝐼 =
𝑀

2𝑎
[

1

3
𝑥3]

𝑎
−𝑎

=
𝑀

6𝑎
(2𝑎3) =

1

3
𝑀𝑎2  
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(ii) Uniform circular disc of radius 𝑎, about the axis of symmetry 

Figure 1 

 

Consider a hoop element of radius 𝑥, as in Figure 1.  

Its mass is 𝜎(2𝜋𝑥𝛿𝑥), 

where 𝜎 =
𝑀

𝜋𝑎2  is the density of the disc per unit area. 

Then  𝐼 = ∫ 𝑥2(
𝑎

0
 2𝜎𝜋𝑥𝑑𝑥) =

2𝑀

𝑎2 ∫ 𝑥3 𝑑𝑥
𝑎

0
 

=
2𝑀

𝑎2 [
1

4
𝑥4]

𝑎
0

=
1

2
𝑀𝑎2  

 

 

 

 

 

 

 



 fmng.uk 

4 
 

(iii) Hollow cone (with no base) about its axis 

 

Figure 2 

 

The surface area of the element shown is (2𝜋𝑦)𝛿𝑢 

The surface area of the cone is  𝜋𝑎𝑙, 

so the density of the hollow cone is  𝜎 =
𝑀

𝜋𝑎𝑙
  per unit area, 

and the mass of the element is  (2𝜋𝑦)(𝛿𝑢)𝜎 = (2𝜋𝑦)(𝛿𝑢) (
𝑀

𝜋𝑎𝑙
) 

=
2𝑦𝑀

𝑎𝑙
𝛿𝑢  

Also, 𝑦 = 𝑢𝑠𝑖𝑛𝛼  and  𝑎 = 𝑙𝑠𝑖𝑛𝛼 

 

𝐼 = ∫ 𝑦2.
𝑙

0

2𝑦𝑀

𝑎𝑙
𝑑𝑢 =

2𝑀

𝑎𝑙
∫ 𝑢3𝑠𝑖𝑛3𝛼

𝑙

0
 𝑑𝑢  

=
2𝑀𝑠𝑖𝑛3𝛼

𝑎𝑙
[

1

4
𝑢4]

𝑙
0

=
𝑀𝑙3𝑠𝑖𝑛3𝛼

2𝑎
=

𝑀𝑎2

2
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(4) The moment of inertia of a body will be unaffected if each 

particle making up the body is moved parallel to the specified 

axis. 

This means that the following pairs of bodies have the same 

moments of inertia: 

 

rod of length 2𝑎  through G, perpendicular 
to the rod 

1

3
𝑀𝑎2  

rectangular lamina of sides 
2𝑎 and 2𝑏 

in plane of lamina, 
bisecting the side of length 
2𝑎 

1

3
𝑀𝑎2  

 

circular hoop of radius 𝑎 
 

axis of symmetry 𝑀𝑎2  

cylindrical shell of radius 𝑎 
 

axis of symmetry 𝑀𝑎2  

 

circular disc of radius 𝑎 axis of symmetry 1

2
𝑀𝑎2  

cylinder of radius 𝑎 axis of symmetry 1

2
𝑀𝑎2  

 

 

(5) By symmetry, the formula for the moment of inertia of a 

hemisphere will be the same as that of a sphere (but with 𝑀 now 

being the mass of the hemisphere). 

 

(6) Perpendicular Axis Theorem (for a lamina): 𝐼𝑧 = 𝐼𝑥 +  𝐼𝑦  

Considering a lamina in the 𝑥-𝑦 plane, let its moments of inertia 

about the 𝑥 & 𝑦 axes be 𝐼𝑥  & 𝐼𝑦 , respectively. 

Then, if 𝑟 is the distance of any point in the lamina from O,  
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𝑟2 = 𝑥2 + 𝑦2 , and so the moment of inertia about the 𝑧-axis will 

be  𝐼𝑥 +  𝐼𝑦 . (This will be true whether the lamina is uniform or 

not.) 

 

Examples 

(i) To find the moment of inertia of a circular disc of radius 𝑎 

about a diameter: 

Let the Origin be the centre of the disc. Then the moment of 

inertia about the axis of symmetry, 𝐼𝑧 =
1

2
𝑀𝑎2 (from the table of 

standard results), and the moment of inertia about a diameter is  

𝐼𝑥 = 𝐼𝑦 . Then, by the perpendicular axis theorem,  𝐼𝑧 = 𝐼𝑥 +  𝐼𝑦 , 

so that  𝐼𝑥 =
1

4
𝑀𝑎2 

(ii) To find the moment of inertia 𝐼 of a rectangular lamina of 

sides 2𝑎 and 2𝑏, about the perpendicular axis through the centre: 

The moment of inertia about the axis in the plane of the lamina, 

bisecting the side of length 2𝑎, is 
1

3
𝑀𝑎2, so that, by the 

perpendicular axis theorem, 𝐼 =
1

3
𝑀𝑎2 +

1

3
𝑀𝑏2 =

1

3
𝑀(𝑎2 + 𝑏2) 

 

(7) Parallel Axis Theorem: 𝐼𝐴 = 𝐼𝐺 + 𝑀𝑑2 

Let 𝐼𝐺  be the moment of inertia of a rigid body about an axis that 

passes through the centre of gravity 𝐺, and let 𝐼𝐴 be the moment 

of inertia about a parallel axis that passes through the point 𝐴, 

such that the shortest ('perpendicular') distance between the 

axes is 𝐴𝐺 = 𝑑. 

Define the 𝑧-axis of a coordinate system to be the above-

mentioned axis passing through 𝐺, and define the 𝑥-axis so that 

𝐴𝐺 lies on it. Thus 𝐺 is the Origin of the system. 
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Figure 3 

Referring to Figure 3, if 𝑃 is the position of any particle in the 

body, the triangle 𝑃𝐴′𝐺′ can be constructed, where 𝑟 and 𝑟𝐺  are 

the 'perpendicular' (or shortest) distances of 𝑃 from the two axes. 

The triangle will be in a plane parallel to the 𝑥-𝑦 plane. 

By the cosine rule, 𝑟2 = 𝑟𝐺
2 + 𝑑2 − 2𝑑𝑟𝐺𝑐𝑜𝑠𝜃 

and  𝑚𝑃𝑟2 = 𝑚𝑃𝑟𝐺
2 + 𝑚𝑃𝑑2 − 2𝑚𝑃𝑑𝑟𝐺𝑐𝑜𝑠𝜃, where 𝑚𝑃 is the 

mass of particle 𝑃. 

Then note that 𝑟𝐺𝑐𝑜𝑠𝜃 = 𝑥𝑃, the 𝑥 coordinate of P, and as 𝐺 is the 

Origin, ∑ 𝑚𝑃𝑥𝑃 = 0, by definition of the centre of mass. 

So, on summing over all particles, we obtain 

𝐼𝐴 = 𝐼𝐺 + 𝑀𝑑2 − 2𝑑 ∑ 𝑚𝑃𝑥𝑃 = 𝐼𝐺 + 𝑀𝑑2  

 

Example 

To find the moment of inertia 𝐼 of a rod of length 2𝑎 about a 

perpendicular axis through one end of the rod: 

As the moment of inertia through G, perpendicular to the rod, is 
1

3
𝑀𝑎2, 𝐼 =

1

3
𝑀𝑎2 + 𝑀𝑎2 =

4

3
𝑀𝑎2 


