Minimum Connector - Q1 [Practice/E](16/6/21)

For the network below:

(i) Apply Kruskal's algorithm to create a minimum spanning tree (showing the order in which arcs are added), and giving the total weight.
(ii) Apply Prim's algorithm to create a minimum spanning tree starting at A (showing the order in which nodes are added), and giving the total weight.
(iii) Create a distance matrix for the network.
(iv) Use this matrix to apply Prim's algorithm - starting at J this time.

Solution
(i) $\mathrm{FI}(2) \mathrm{FG}(3) \mathrm{IE}(3) \mathrm{BE}(3) \mathrm{IH}(3) \mathrm{CD}(4) \mathrm{IJ}(5) \mathrm{AB}(5)$
[reject $\mathrm{FH}(5) \& \mathrm{GH}(5)] \mathrm{ED}(6)$ [spanning tree is complete]
Total weight: 34
(ii) $\mathrm{AB}(5) \mathrm{BE}(5) \mathrm{ED}(6) \mathrm{EI}(3) \mathrm{IF}(2) \mathrm{IH}(3) \mathrm{FG}(3) \mathrm{DC}(4)$

Total weight: 34
(iii) \& (iv)

	10	6	9	8	5	3	4	7	2	1
	A	B	C	D	E	F	G	H	I	J
A		(5)			9	10	12			
B	5		7	8	(3)					
C		7		(4)						
D		8	4		(6)					
E	9	3		6					(3)	
F	10						3	5	(2)	
G	12					(3)		5		
H						5	5		(3)	
I					3	2		3		(5)
J				7					5	

$\mathrm{JI}(5) \mathrm{IF}(2) \mathrm{FG}(3) \mathrm{IE}(3) \mathrm{EB}(3) \mathrm{IH}(3) \mathrm{ED}(6) \mathrm{DC}(4) \mathrm{BA}(5)$
Total weight: 34

