Minimum Connector Overview (17/6/21)

Q1 [Practice/E]

For the network below:

(i) Apply Kruskal's algorithm to create a minimum spanning tree (showing the order in which arcs are added), and giving the total weight.
(ii) Apply Prim's algorithm to create a minimum spanning tree starting at A (showing the order in which nodes are added), and giving the total weight.
(iii) Create a distance matrix for the network.
(iv) Use this matrix to apply Prim's algorithm - starting at J this time.

Q2 [5 marks]

Minimum connectors $M_{1} \& M_{2}$ have been found for two networks. A new network N is then formed by joining together $M_{1} \& M_{2}$ by the arcs $A B$ and $C D$, where $A \& C$ are nodes in M_{1} and $B \& D$ are nodes in M_{2}.

The tree T is then formed from M_{1} and M_{2}, together with the shorter of $A B$ and $C D$. Is T always, sometimes or never a minimum connector for N ?

