Minimum Connector Overview (17/6/21)

Q1 [Practice/E]

For the network below:

(i) Apply Kruskal's algorithm to create a minimum spanning tree (showing the order in which arcs are added), and giving the total weight.

(ii) Apply Prim's algorithm to create a minimum spanning tree starting at A (showing the order in which nodes are added), and giving the total weight.

(iii) Create a distance matrix for the network.

(iv) Use this matrix to apply Prim's algorithm - starting at J this time.

Q2 [5 marks]

Minimum connectors $M_1 \& M_2$ have been found for two networks. A new network N is then formed by joining together $M_1 \& M_2$ by the arcs AB and CD, where A & C are nodes in M_1 and B & D are nodes in M_2 .

The tree *T* is then formed from M_1 and M_2 , together with the shorter of *AB* and *CD*. Is *T* always, sometimes or never a minimum connector for *N*?