MAT: Specimen 2 - Multiple Choice (5 Pages; 4/11/20)

Q1/A

Solution

By linear interpolation, the required coordinates are:
$\left(\frac{2}{3}(2)+\frac{1}{3}(8), \frac{2}{3}(3)+\frac{1}{3}(-3)\right) ;$ ie $(4,1)$
So the answer is (d).

Q1/B

Solution

The graph of $y=-f(x+1)$ is obtained from $y=f(x)$ by a translation of 1 to the left, followed by a reflection in the x-axis (or the other way round).

So the answer is (a).

Q1/C

Solution

First of all, $\tan \left(\frac{5 \pi}{4}\right)=\tan \left(\frac{\pi}{4}\right)=1$
Also $\sin ^{2}\left(\frac{5 \pi}{4}\right)<1$, and $\log _{10}\left(\frac{5 \pi}{4}\right)<1$ (as $\frac{5 \pi}{4}<10$),
And $\log _{2}\left(\frac{5 \pi}{4}\right)>1\left(\right.$ as $\left.\frac{5 \pi}{4}>2\right)$
So the answer is (d).

Q1/D

Solution

[Typo in question: "(d) .9" should read "(d) 9" (presumably)] $x=9 \Rightarrow y \leq \frac{5}{3}, y \geq \frac{11}{3}$ (ie a contradiction); so (d) is eliminated $x=8 \Rightarrow y \leq \frac{7}{3}, y \geq \frac{10}{3}$ (ie a contradiction); so (c) is also eliminated
$x=7 \Rightarrow y \leq 3, y \geq 3$ and $y \leq 9$, so $x=7$ is a possible answer As there are no larger numbers amongst the answers, we can deduce that (b) must be the correct answer.

Q1/E

Solution

$\cos (\sin x)=\frac{1}{2} \Rightarrow \sin x= \pm \frac{\pi}{3}+2 \pi k$ (where k is an integer)
But none of these lie between -1 and 1 , and so there are no sol'ns.
ie the answer is (a)

Q1/F

Solution
$y=x^{2}-2 a x+1 \Rightarrow y=(x-a)^{2}-a^{2}+1$
and so the turning point is at $\left(a, 1-a^{2}\right)$,
and its distance from the Origin is $\sqrt{a^{2}+\left(1-a^{2}\right)^{2}}$
Writing $b=a^{2}$, this distance is minimised when
$b+(1-b)^{2}=b^{2}-b+1=\left(b-\frac{1}{2}\right)^{2}-\frac{1}{4}+1$ is minimised; ie when $b=\frac{1}{2}$, and $a= \pm \frac{1}{\sqrt{2}}$

ie the answer is (d)

Q1/G

Solution

The two digit multiples of 13 are $13,26,39,52,65,78 \& 91$ (which doesn't eliminate any of the suggested answers).

Given that the 1st digit is 9 , the 2nd digit must be 1 ; the 3rd digit 3 , and the 4 th digit 9 , so that we have the cycle 913 . This accounts for the first 99 digits, so that the last digit must be 9 .
ie the answer is (d)

Q1/H

Solution
$\left(x^{2}+1\right)^{10}=2 x-x^{2}-2$
$\Rightarrow\left(x^{2}+1\right)^{10}+x^{2}-2 x+2=0$
$\Rightarrow\left(x^{2}+1\right)^{10}+(x-1)^{2}+1=0$
As $\left(x^{2}+1\right)^{10} \geq 1$ and $(x-1)^{2} \geq 0$, the LHS is ≥ 2, and so there are no real sol'ns;
ie the answer is (b)

Solution

As the multiple choice options are mutually exclusive, we can in fact use any method we please (ie we're not forced to deduce a particular answer, using only the information given), but the information given is clearly intended to be helpful.

A lower bound of 1.5 can be established by linear interpolation:
As $\log _{2} 2=1$ and $\log _{2} 4=2, \log _{2} 3>\frac{1}{2}(1+2)=1.5$

To establish an upper bound of $\frac{b}{a}$:
$\log _{2} 3<\frac{b}{a} \Leftrightarrow \operatorname{alog}_{2} 3<b \Leftrightarrow \log _{2} 3^{a}<b \Leftrightarrow 3^{a}<2^{b}$
(where we want 3^{a} and 2^{b} to be as close as possible).
Using the information in the question, $27=3^{3}<2^{5}=32$
Thus $\log _{2} 3<\frac{5}{3}=1 \frac{2}{3}$,
and so the answer is (b).
[The method also provides a lower bound:
$2^{3}<3^{2} \Leftrightarrow 3<\log _{2}\left(3^{2}\right) \Leftrightarrow 3<2 \log _{2} 3$ and $\left.\log _{2} 3>1.5\right]$

Q1/J

Solution

$y=x^{2}-2 x=(x-1)^{2}-1$, which is obtained from $y=x^{2}$ by a translation of $\binom{1}{-1}$
and $y=x^{2}+2 x+2=(x+1)^{2}+1$, which is obtained from $y=x^{2}$ by a translation of $\binom{-1}{1}$

Referring to the diagram, there are seen to be at least 7 regions (further investigation would be needed to check that the curves don't intersect at any other points).

