MAT: Specimen 1 - Q5 (3 Pages; 24/9/20)
(i) [The wording seems to be slightly ambiguous: presumably it means that a y is added after the two repetitions (rather than requiring that the last note of the (2nd) repetition is a y).]

From I \& II, $x y$ is a song, and then from III, $y x$ is also a song.
Applying II to these two songs gives: $x x y x y y \& x y x y x y$
And, from III we also get $y y x y x x \& y x y x y x$
(ii) The 1st part follows from II \& III (noting that there are no other ways of creating songs of length $2 m+2$). Strictly speaking, we should also check that none of these songs are the same: there will be k different songs resulting from applying II, and then the further k songs resulting from applying III will be new ones, because they all end in an x (whereas the 1st batch of k songs all end in a y).

For the 2nd part:
To clarify: $n \rightarrow 2^{n+1}-2$ (length) $\rightarrow 2^{n}$ (number of songs of that length); ie not all lengths will be possible.

This can be tackled by induction:
First of all, we show that the result is true for $n=1$:
There are $2^{1}=2$ songs of length $2^{2}-2=2$ (namely $x y \& y x$).
[Note that the natural numbers start at 1 (this is the usual definition; in some countries, they include 0); the question presumably meant to say "... for each natural number n "]

Then assume that there are 2^{k} songs of length $\left.2^{k+1}-2 \quad \quad^{*}\right)$
rtp [result to prove]: there are 2^{k+1} songs of length $2^{k+2}-2\left({ }^{* *}\right)$
1st part of (ii) \& $\left(^{*}\right) \Rightarrow$ there are $2\left(2^{k}\right)$ songs of length
$2\left(2^{k+1}-2\right)+2=2^{k+2}-2$, as required
If the result is true for $n=1$, then from $\left({ }^{* *}\right)$ it will be true for $n=2,3, \ldots$ and hence all n, by the principle of induction.

Alternative method:

As n is increased by 1 , the new length L_{n} is related to the previous one by $L_{n}=2 L_{n-1}+2$ and the number of songs is multiplied by 2 (from the 1st part of (ii)).

So we see that

$$
L_{1}=2, L_{2}=2^{2}+2, L_{3}=2\left(2^{2}+2\right)+2=2+2^{2}+2^{3}
$$

and so on, giving
$L_{n}=2+2^{2}+2^{3}+\cdots+2^{n}=\frac{2\left(2^{n}-1\right)}{2-1}=2^{n+1}-2$, as required.
(iii) [Remember that MAT questions don't usually involve anything too obscure, so it's worth considering simple outcomes.]

For the songs from the "Classical period", the possible lengths were governed entirely by the $2 m+2$ rule, and each possible length only gave rise to another length of higher value. With the "later period" songs, we can now go backwards as well potentially making the situation very complicated.

However, we note that:
(a) For any given length, we can always produce a length of greater value.
(b) To cover any missed values, we can always subtract one: since this is allowed by IV if the last note is a y; and if it is an x, then we
can obtain a song of the same length, ending in a y, by III - and then subtract one from that.
ie we can make a song of any length.

