MAT: Specimen 1 - Q4 (2 pages; 28/11/20)

(i) 1st part

Area of $ABC = \frac{1}{2} AC.BQ$ (where Q is the foot of the perpendicular from B to CA)

$$=\frac{1}{2}b(ABsin\alpha)=\frac{1}{2}bcsin\alpha$$

2nd part

Similarly, Area of $ABC = \frac{1}{2}acsin\beta$ and Area of $ABC = \frac{1}{2}absin\gamma$ And so $\frac{1}{2}bcsin\alpha = \frac{1}{2}acsin\beta = \frac{1}{2}absin\gamma$ which gives $bsin\alpha = asin\beta$, $csin\alpha = asin\gamma$ and $csin\beta = bsin\gamma$, and hence $\frac{b}{sin\beta} = \frac{a}{sin\alpha}$, $\frac{c}{sin\gamma} = \frac{a}{sin\alpha}$ (and $\frac{c}{sin\gamma} = \frac{b}{sin\beta}$); ie $\frac{a}{sin\alpha} = \frac{b}{sin\beta} = \frac{c}{sin\gamma}$

(ii) The form of the answer suggests subtractingArea(AQR)+Area(BPR)+Area(CQP) from Area(ABC), andsymmetry suggests that we should try to show that

$$Area(AQR) = cos^2 \alpha \times Area(ABC)$$

Now Area(AQR) = $\frac{1}{2}AQ$. ARsin α ,

Considering the right-angled triangle ABQ,

[as we need to incorporate the fact that Q is the foot of the perpendicular from B onto AC]

 $AQ = ABcos\alpha = ccos\alpha$,

and also, $AR = AC\cos\alpha = b\cos\alpha$ So Area(AQR) $= \frac{1}{2}(\cos\alpha)(b\cos\alpha)\sin\alpha$ and hence $\frac{Area(AQR)}{Area(ABC)} = \frac{\frac{1}{2}bc\cos^2\alpha\sin\alpha}{\frac{1}{2}bc\sin\alpha} = \cos^2\alpha$, as required.

(iii) In order that Area(PQR) = 0, P, Q & R must lie on a straight line. A bit of experimenting shows that ABC has to be right-angled for this to happen.