MAT: Specimen 1-Q4 (2 pages; 28/11/20)
(i) 1st part

Area of $A B C=\frac{1}{2} A C . B Q$ (where Q is the foot of the perpendicular from B to $C A$)
$=\frac{1}{2} b(A B \sin \alpha)=\frac{1}{2} b c \sin \alpha$

2nd part

Similarly, Area of $A B C=\frac{1}{2} a c \sin \beta$ and Area of $A B C=\frac{1}{2} a b \sin \gamma$ And so $\frac{1}{2} b c \sin \alpha=\frac{1}{2} a c \sin \beta=\frac{1}{2} a b \sin \gamma$
which gives $b \sin \alpha=a \sin \beta, c \sin \alpha=a \sin \gamma$ and $c \sin \beta=b \sin \gamma$, and hence $\frac{b}{\sin \beta}=\frac{a}{\sin \alpha}, \frac{c}{\sin \gamma}=\frac{a}{\sin \alpha}\left(\right.$ and $\frac{c}{\sin \gamma}=\frac{b}{\sin \beta}$); ie $\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$
(ii) The form of the answer suggests subtracting

Area(AQR)+Area(BPR)+Area(CQP) from Area(ABC), and symmetry suggests that we should try to show that
$\operatorname{Area}(\mathrm{AQR})=\cos ^{2} \alpha \times \operatorname{Area}(A B C)$
Now $\operatorname{Area}(\mathrm{AQR})=\frac{1}{2} A Q . A R \sin \alpha$,
Considering the right-angled triangle ABQ,
[as we need to incorporate the fact that Q is the foot of the perpendicular from B onto $A C]$
$A Q=A B \cos \alpha=c \cos \alpha$,
and also, $A R=A C \cos \alpha=b \cos \alpha$
So $\operatorname{Area}(\mathrm{AQR})=\frac{1}{2}(c \cos \alpha)(b \cos \alpha) \sin \alpha$
and hence $\frac{\operatorname{Area}(A Q R)}{\operatorname{Area}(A B C)}=\frac{\frac{1}{2} b c \cos ^{2} \alpha \sin \alpha}{\frac{1}{2} b \operatorname{csin} \alpha}=\cos ^{2} \alpha$, as required.
(iii) In order that Area $(P Q R)=0, P, Q \& R$ must lie on a straight line. A bit of experimenting shows that ABC has to be right-angled for this to happen.

