MAT: Specimen 1 - Q3 (2 Pages; 24/9/20)
(i) $f^{\prime}(x)=0 \Rightarrow 2 x-2 p=0 \Rightarrow x=p$

So there will be a stationary value in the range $0<x<1$ if and only if $0<p<1$.
(ii) [It may be worth doing some rough sketches of possible configurations of $y=f(x)$ at this point.]

As we have a u-shaped curve, with a minimum at $x=p \geq 1$,
$m=f(1)=1-2 p+3=4-2 p$
(iii) As the minimum is at $x=p \leq 0, m=f(0)=3$
(iv) As the minimum is at $x=p, m=f(p)=p^{2}-2 p^{2}+3$
$=3-p^{2}$
(v) For $-2 \leq p \leq 0, m=3$

For $0<p<1, m=3-p^{2}$ (an n-shaped quadratic)

For $p \geq 1, m=4-2 p$
[We can see that these functions agree at the points where they join. We might reasonably expect the gradients to agree as well, so to check this:
$\frac{d}{d p}\left(3-p^{2}\right)=-2 p=0$, when $p=0$
And $-2 p=-2$, when $p=1$, which is the gradient of $m=4-2 p$.
Note though that the 2nd derivatives don't agree.]

